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No. XXVII

APPENDIX TO CAPTAIN KATER’S ACCOUNT OF EXPERIMENTS
FOR DETERMINING

THE LENGTH OF THE PENDULUM

VIBRATING SECONDS IN THE LATITUDE OF LONDON.*

From the Philosophical Transactions for 1818, p. 95.

My pEAR SR,

I canxor forbear to congratulate you on the discovery
of the singular property of your pendulum, which has lately
been demonstrated by Mr. Laplace, since it appears to remove
the only doubt, that could reasonably be entertained, of the
extreme accuracy of the results of your experiments. The
correction for the curvature of the rolling surfaces, in the case
of a simple pendulum, is very easily obtained from the geo-
metrical determination of the curve described, although Mr.
Laplace’s train of reasoning, from mechanical principles, is
somewhat too elaborate to be readily followed through all the
symbols in which it is enveloped : and the same geometrical
considcrations appear, at first sight, to be equally applicable
to the case of compound pendulums in general, since the

® The reciprocity of the centres of suspension and oscillation, a theorem demon-
strated by Huypens, was made use of by Capt. Kater for determining very accurately
the Jenzth of the seconds pendulum ; and the details of the processes and experiments
whe b were made use of for that purpose, form the subject of the well-known paper
t. wha b the article in the test was appended, It gives a very ingenious investi-
gstwn of a theorem, of no amall importance in the verification of the methods
wi. h were employed in this determination, which was first demonstrated by
Lajisre in the ¢ Connaisaance du Tems.”  Another and a much more simple inves-
t-atin was pointesd out at the end of a paper (No. XXVIIL) which immediatel
filwme the vue @iven in the texst.  The theorem is now found in Dr. Whewell’s
s Dynasaes’ and i other elementary books,  See also Sir J. Lubbock®s ¢ Memoir on

v Fendtum” in the Philoaophical Transactions tor 1830, where the problem is
Qise tionon] 11 10 Wt ',:-nn:ul torm. Note by the Fditor,

Vol 1L B



2 APPENDIX TO CAPT. KATER’S EXPERIMENTS No. XXVII.

motions of all their effective parts are concentric with those
of a gimple one similarly suspended. But upon further reflec-
tion, it becomes evident that these motions, though concentric, -
are related to each other in proportions somewhat different
from those of a similar pendulum vibrating on a single point,
and it is therefore necessary to determine the modification of
the motion produced by this difference of connexion. The in-
vestigation may however be conducted in a method much more
simple and intelligible to ordinary capacities, than that which
has been adopted by the celebrated mathematician to whom we
are indebted for the theorem ; and I am tempted to send you
an “apercu” of the reasoning by which 1 have satisfied myself
respecting it.

It follows immediately from the general theorem for finding
the curvature of trochoids of all kinds (Lectures on Nat. Phil.
II. p. 559), that the radius of curvature of the path of any
point, in the rod of a pendulum supported by a cylindrical axis,
will initially be a third proportional to the distances of the
point from the centre of the cylinder, and from the surface on
which it rolls: so that when the cylinder is small and the pen-
dulum simple, the centre of curvature of its path may be con-
sidered as situated at the distance of the radius r below the
point of contact: and this is obviously the only correction
required for such a pendulum as that of Borda. But when the
weight is divided, or of considerable magnitude, it becomes
necessary to calculate the effect of the different curvatures of
the paths of its different parts, and to compare these paths
with that of a pendulum A of any given length a. Supposing,
for the sake of simplicity, the weight of each horizontal section
to be concentrated in the vertical line, and calling the distance
of any particle P below the surface of the cylinder z, the
radius of curvature of its path will be a third proportional to

x 4 r and z, that is, _,%; ; and the inclination of the curve at a

given distance from the vertical line being always directly as
the curvature, or inversely as its radius, the force derived from
the weight of P will be to the force at an equal distance in the

path of A, as a to = ,oras"—(ﬁr:'—')tol. Now the point of

x
E 4
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the rolling pendulum confined to the vertical line is not the
ceatre of curvature, but initially the surface of the cylinder : so
that this must be considered as the point of intersection
with the vertical line, and as the fulecrum of the lever ; con-
sequently the distance of P from the vertical line will be, to
that of the pendulun A, as z to a, and its immediate force will

k‘ ‘::') . ; - P -..-.::'P; butthisfowe,wﬁngonlyatthe

end of a lever r, will have its effect at A again reduced in the

ratio of r to a, and will then become % :' r

prese the sum of all the similar forces belonging to the body by
the character 2, whether found by a fluxional calculation or

otherwise, we have the whole force, at A, £= * TP The

a
reduced or rotatory inertia of the body, sometimes very impro-
perly called the “momentum ™ of inertia, will also be ex-

preveed by = :;: P, being reduced in the ratio of the squares of
the distances from the fulcrum ; consequently the accelerative
7P
force will be to that of the pendulum A as ;‘:T)m 1, or
a

P; and if we ex-

1rsP
«e2s+r
«r the differential be divided by the constant quantity a: and
m order to express the length of the equivalent pendulum, we

must suppose a to be as much lengthened as the force is weak-
1rcP

4+ r)b’

that the denominator of this fraction is the same that would
“xprvsa the force of the body with regard to the centre of the
nlinder as a fixed point; and it might indeed have been
aferred at once, from the principle of virtual velocities, that
- force must be the zame in either case, however irregular
the form of the body may be : but it is somewhat more satisfac-

usy o follow the mechanical steps by which the operation of
the law takes place. If we make r = 0, we have x’_::'r' =1
S the leagth of the equivalent pendulum when the surface

f the cylinder is supposed to bhe the centre of suspension;
K2

a- to 1 ; since it is indifferent whether the integral

+2»~], = that we have for this length It is obvious
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and it follows from the well known properties of the centre
of gravity, that 3 z P, the sum of the product of all the
particles into their distances, is equal to Qd, the product of
the whole weight Q into the distance of the centre of gravity
from the point of suspension; and 2 *P = 2zPI1 =dQ},
so that the equivalent length for the rolling pendulum becomes
diQ  __a1Qq  _alq L _ 1 __r)‘
2(x+r)P T 22P+2rP  dQ+rQ T l+;—_ d
r being supposed very small ; which, for a simple pendulum,
when d =1, becomes ! — r, as it ought to do. We must
however find the displacement of the centre of suspension
which is capable of producing an equal alteration in the
length of the equivalent pendulum; and for this purpnse we
‘must have recourse to the theorem of Huygens, which may

be easily deduced from the expression 2;—3? : for calling
z — d, the distance of any particle of the body from its
centre of gravity, y, we have 2* = (d + y)* = &* + 2dy + y*, and
2P = &P 4- 2d3yP + Zy°P = &*Q + 0 + Zy°P, the in-
tegral of ZyP, the product of the distance of each particle into
its distance from the common centre of gravity always vanish-

ing : consequently = ""’Pd'gd'Q = !:JinP + dyand (—d =
gy P

4aq > Which is Huygens’ theorem: the constant quantlty Q yP

being equal to dl — d*. If now we suppose d to be increased

by the small quantity s, the reciprocal, instead of I — d, will
dl - l-d
become 5 —— d+, l+'=<’ d)(1=3)=l-d=1743t0

which adding d + s, we have I — 1:7 + 2s, the increase of the
lengtfr being u

have s = Mf ;- and when the pendulum is iuverted, substi-
- Ir ir
A—2d—1=2d=1
which, added to the former negative value of the same
quantity, must always destroy it: so that the length of the
equivalent pendulum will be truly measured by the simple

d—l’; and making this equal to——;:r. we

tuting I — d for d, the expression becomes
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distance of the surfaces of the cylinders, as Mr. Laplace has
demonstrated.

There is however another correction, of which it becomes
pecessary to determine the value, when a very sharp edge is
used for the axis of motion, as in the pendulum which you have
employed : since it appears very possible, that in this case the
temporary compression of the edge may produce a sensible
elongation of the pendulum. But it will be found, by calculating
the magnitude of this change, that when the edge is not ex-
tremely short, and when ite bearing is perfectly equable, this
correction may be safely neglected.

Supposing a to be the distance from the edge, in the plane
bisecting its angle, at which the thickness is such, that the
weight of the modulus of elasticity corresponding to the section
shall become equal to the weight of the pendulum, the elasticity
at any other distance z from the edge will be measured by z,
while the weight is represented by a; so that the elementary
increment 2’ will be reduced by the pressure of the weight to

—_ 2, and the element of the compression will be —— z’,

e+ z at+=x
and its ﬂnxiona;:_:dz, of which the fluent is anu L “:"’-

Now the height of the modulus of elasticity of steel is ten
million feet (Lect. Nat. Phil. II. p. 509), and the weight of a
bar, an inch square, and of this height, would be about 30 mil-
lions of pounds; so that if the weight be 10 pounds, and the
live of bearing an inch long, the thickness at the distance a
must be one three millionth of an inch; and supposing the
angle aright one, @ must be rysisss; and making r=1, we
have the whole compression of the edge within the depth of an
inch ;y7ivss B L 4244001; and this logarithm being 15.26,
the correction becomes equal to the 360 thousandth of an inch.
If the bearing were onc-tenth of an inch only, the compression
for both the oppositc edges would become ryi54, SUpposing
that they retained their elasticity, and underwent no permanent
alteration of form. In fact, however, the edge must be consi-
dered as a portion of a minute cylinder, which will be still less
compressible than an angle contained by planes ; and the happy
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property, demonstrated by Mr. Laplace, will prevent any sen-
sible inaccuracy from this cause, however blunt the edges may
be, supposing that the steel is of uniform hardness in both.
Believe me, my dear Sir, very sincerely yours,
Tuaomas Youne.
Welbeck Street, 5th Jan. 1818.

PS. It is easy to show that the determination of the length
of the pendulum, by means of a weight sliding on a rod or
bar, which is the method that I have proposed as the most
convenient for obtaining a correct standard, is equally inde-
pendent of the magnitude of the cylinder employed. The
reduced inertia 2 2° P here consist of two portions: for the
rod we may take the equivalent expression d/Q, which we
may cal]l azy, a being the weight of the bar (Q), z the
distance (d) of the centre of gravity, and y the equivalent
length (/): for the ball we must employ the formula
322 P=2yP + d*Q, and call 323*P, u, and d®Q, b2%,
b being the weight of the ball, and z the distance of its
centre of gravity from the point of suspension: and in the
same manner the force 2 (z 4-r) P = (d + r) Q must be com-
posed of the two portions a (z 4 ) and b (z + 7), so that the

y+u+b 2+ b+u
. ar, u 22
equivalent length becomes - A TbG D = prerrmrr o
. z +
b
which we may call f:: = t. The experiment being then

performed in four different positions of the weight, at the
distances d’, d", and d"”, so that the second value of z may be
z —d = 2, the third z — 4" = 2", and the fourth z — d""=2",
we must observe the times of vibration, and deduce from
them the comparative lengths of the equivalent pendulum,
t, n't,n"t, and n"’t: and heunce the value of z, of v, and
of ¢ may be obtained, without determining w, and of course

without employing the quantity r.
224v 2240 _ o, 240 2" 4y

", "

n .

4w 4w Pt = b e =

L
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_z+v Il L _2 4
ll.z+w— Z’+w Wt y 2 +w———"7,‘—-;
2"t + o
7w

HL z -2z =d';z2-~2"=d";2z~2"=4d".

'_z'+v M +o " 2* + v " 4+ v
IV. & = i3 d T T T

. dul _
H =

v _*+v #*+v 240 2+v_nt+v 24
.t = d  wdr T TdT T Twdm T anr T gt

VI. By comparing the first of these equations successively
with the second and third, and bringing the terms containing
o to the same side, we obtain

‘i :pl nl 1
°=(i_._'d-_7"+ ndn) ( T i "d" _—ti' +;T‘7')=
s S "
(_'_ wd A" + "’d"’) (dl" - ;I"d"l - d + Id[

This equation contains only the squares of the value of z
with known coefficients ; and if we substitute z — &, z — d”,
and z — d” for 2, 2, and 2", respectively, we shall
obtain an equation in the form ¢2* + fz = g, whence
=V (g+ i) -

T. Y.
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No. XXVIIL

REMARKS ON THE PROBABILITIES OF ERROR IN
PHYSICAL OBSERVATIONS,
AND ON :PHE DENSITY OF THE EARTH,

CONSIDERED WITH REGARD TO THE REDUCTION OF EXPERIMENTS ON THE
PENDULUM.

IN A LETTER TO CaPT. HENRY KATER, F.R.S.

From the Philosophical Tr tions for 1819,

READ JANUARY 21, 1819.

My DEAR SIr,
THE results of some of your late experiments on the

pendulum having led me to reflect on the possible inequalities
in the arrangement of gravitating matter within the earth’s
substance, as well as on the methods of appreciating the ac-
curacy of a long series of observations in general, I have
thought that it might be agreeable to you, to receive the con-
clusions which I have obtained from my investigations, in such
a form as might serve either to accompany the report of your
operations, or to be laid before the Royal Society as a distinct
communication.

1. On the estimation of the advantage of multiplied observations.

It has been a favourite object of research and speculation,
‘among the authors of the most modern refinements of mathe-
matical analysis, to determine the laws, by which the proba-
bility of occurrences, and the accuracy of experimental results,
may be reduced to a numerical form. It is indeed true, that
this calculation has sometimes vainly endeavoured to substitute
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arithmetic for common sense, and at other times has exhibited
an inclination to employ the doctrine of chances as a sort of
auxiliary in the pursuit of a political object, not otherwise so
easily attainable : but we must recollect, that at least as much
good sense is required in applying our mathematics to objects
of a moral nature, as would be sufficient to enable us to judge
of all their relations without any mathematics at all : and that
a wise government and a brave people may rely with much
more confidence on the permanent sources of their prosperity,
than the most expert calculators have any right to repose in the
most ingenious combinatious of accidental causes.

It is however an important, as well as an interesting study,
to inquire in what manner the apparent constancy of many
general results, which are obviously subject to great and nu-
merous causes of diversity, may best be explained : and we
shall soon discover that the combination of a multitude of inde-
pendent sources of error, each liable to incessant fluctuation,
bas a natural tendency, derived from their multiplicity and
independence, to diminish the aggregate variation of their joint
effect ; and that this consideration is sufficient to illustrate the
occurrence, for example, of almost an equal number of dead
letters every year in a general post office, and many other
similar circumstances, which, to an unprepared mind, seem to
wear the appearance of a kind of mysterious fatality, and which
have sometimes been considered, even by those who have inves-
tigated the subject with more attention, as implying something
approaching more nearly to constancy in the original causes
of the events, than there is any just reason for inferring from
them.

This statement may be rendered more intelligible by the
simple case of supposing an equal large number of black and
white balls to be thrown into a box, and 100 of them to be
drawn out cither at once or in succession. It may then be
demonstrated, as will appear hereafter, from the number of
ways in which the respective numbers of each kind of balls
may happen to be drawn, that there is 1 chance in 124 that
exactly 50 of cach kind may be drawn, and an even chance
that there will not be more than 53 of either, though it still
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remains barely possible that even 100 black balls or 100 white
may be drawn in succession.

From a similar consideration of the number of combinations
affording a given error, it will be easy to obtain the probable
error of the mean of a number of observations of any kind ;
beginning first with the simple supposition of the certainty of
an error of constant magnitude, but equally likely to fall on
either side of the truth, and then deducing from this suppo-
sition the result of the more ordinary case of the greater proba-
bility of small errors than of larger ones. This liability to a
constant error may be represented, by supposing a counter to
have two faces, marked O and 2: the mean value of an infinite
number of trials will then obviously be 1, and the constant
error of each trial will be 1, whether positive or negative.

Now in a combination of » trials with such a counter, if we
divide the sum of the results by n, the greatest possible error
of the mean thus found will be 1; and the probability of any
other given error will be expressed by the number of combina-
tions of the faces of n counters affording that error, divided by
the whole number of combinations ; that is, by the correspond-
ing coefficient of the binomial (141)* divided by 2%, the
sum of the coefficients. The calculations therefore will stand
thus:

n=2 n=3 n=4 n==6 n=28
Coeflicients 181 138381 14641 1 6152,. 1 828567,
Numbers thrown 0 2 ¢ 0246 02468 02 46 0 2 4 6 8
Differencesfrom»s 2 0 8 3 1 1 38 4 2 02 4 6 4 20 8 6 4 2 o...
Errorsofthemeans1 0 1 1 4§ 3 1 1 ¢ 0 4 1 1 § 4 0,.. 1 & ¢ & 0.,
Sums of errors 14041=3 14 14141=4 14840424 1=6 1 444+540.,. 146+144+14+0...
Mean errors =4 i=i =1 =t =it

It is easy to perceive that these coefficients must express the
true numbers of the combinations, since they are formed by
adding together the two adjacent members of the preceding
series ; thus when » is 3, 1 combination giving the number O
and 3 the number 2, these two combinations being again
respectively combined with 2 and O of a fourth counter, give
143=4, for the combinations affording the number 2 in the
next series ; while each succeeding series must continue to begin
and end with unity, since there is ounly one combination that
can afford either of the extremes.
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In order to continue the calculation with greater convenience,
we must find a general expression for the middle terms, 2, 6,
20, 70..., neglecting the odd values of n. The first, 2, is
made up of (1 + 1), the second, 6,is 2 (2 + 1); 20i8 2 (6 + 4)
and 70 = 2 (204 15):0or 6 = 2(2.§),20 = 2 (6.§), 70 = 2
(20.7), whence the series may easily be continued at pleasure,
multiplying always the preceding term by#g, ¥, ¥, ¥,...
We have also 6=16 . § = 2.1, 20 = 2°. 4, and 70 = 2°. f4:
consequently the terms of this series, divided by 2*, will always
express the mean errors already calculated. From this value
of the middle term we may easily deduce that of the neigh-

bouring terms by means of the original formula n. % .

el b el

Rt AT the first factor less than unity being
in :

always l_"-"_’i+-1-:§ . - The magnitude of the mean error is ex-

»
hibited in the annexed table.
The general expression for this serigs

wMeneror,  being 1.1.1...2=1, it is obvious that
2 .500000
4 .375000
6 .312500 will be ; , whatever the value of »n may be :
8 .273437

if we multiply itbyg.¢...

T, the product

and when that value is large, the factors of

10 -2“'6?9* these two expressions will approach so near
12 .225586 to each other that they may be considered
14 .209473 as equal; consequently the corresponding
16 . 19?381 terms of either, taken between any two large
18 185471 values of m, will vary in the subduplicate
20 -176"{6 ratio of n, since their product, which may be
30 .144466 considered as the square of either, varies in
40 .125363

the simple ratio of n, so that the mean error
50 112271 , |
60 102574 may ultimately be expressed by +/ o The
70 .093022 value of p evidently approximates to that of
80 088924 the quadrant of a circle, of which the radius
90 .OR3K6H is unity : thus forn = 10 it s 1.6512, and
100 079586 for n = 100, L5785, instead of 1.5708 ; and
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the ultimate identity of these magnitudes has been demonstrated
by Euler and others. (See Mr. Herschel’s Treatise on Series,
in Lacroix, Engl. Ed., n. 410.)

The fraction thus found, multiplied by 2%, gives the number
of combinations expressed by the middle term, in which the
error vanishes, when n is even: and the whole number of
combinations being also 2% it is obvious that the fraction
alone must express the probability of a result totally free
from error. The neighbouring terms on each side, for
n=100, are .078025, .073524, and .066588, the sum of the
7 being .515860 ; and since this sum exceeds 4, it is obviously
more probable that the result of 100 trials will be found in
some of these seven terms, than in any of the remaining 94,
and that the mean error will not exceed ;5. When = is
so large, that the terms concerned may be considered as

nearly equal, the factors i’?-: X ;:—;; ..., may be expressed

byl — 72" I — -g' 1 -—--1;..., and the terms themselves

b.y 1, l-—f: 1—-%» l—l—:...,the negative parts forming

the series% (1,4,9...) of which the sum, for ¢ terms, is
:—(é C+3¢+4g) or ultimate]y% ¢*; consequently if we
call the middle term e, we must determine ¢ in such a manner
as to have e (29—‘%‘9’) = *}—e,andq(l—aznq’) = :;—t};
but ¢ has been already found in this case, = ¥ ‘-:;, and
neglecting at first the square of ¢, we have ¢ = ¥ 4/ (pn) — 4,
and ¢* = l—lspn, whenceszuq’ =%1p, and 1 —:—'q’ = .93455;
hence, for a second approximation, .93455 ¢ = 31-.—}, and
g = 2674/ (pn) — .53 ; and by continuing the operation we
obtain 9235 ¢ = [ _ 4, and ¢ = 271 J (pn) — .54; con-

sequently the probable error, being expressed by %q , will be
542 «/% L8O 08 g formula, for n = 100, be-

n Jn n

comes 0571, and for n = 10000, .00679 —.00011 = .00668.
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We must not, however, lose sight, in this calculation, of
the original condition of liability to a certain constant error
in each trial. For example, we may infer from it, that if we
made 100 observations of the place of a luminary, each dif-
fering 1’ from the truth, but indifferently on either side of -
it, the error of the mean result would probably not exceed
—;3 . 1’ = 3.6”; and that in 1000 observations it would probably
be reduced to about a second. Now although in the methods
of observing which we employ, the error is liable to consi-
derable variations, yet it may be represented with sufficient
accuracy, by the combination of two or more experiments in
which the simpler law prevails. For example, the combina-
tion of two counters, such as have been considered, is equi-
valent to the effect of a die with four faces, or a tetraedron,
marked 0, 2, 2, and 4, or with errors expressed by 1, O, O,
and —1; the combination of three counters is represented by
a die having eight faces, or an octaedron, with the errors 1,
$ 3,4, —-4,3,—4,~-1; and the combination of four by a
solid of 16 sides, with the errors 1, 4 x 4, 6 x 0, 4 x — 4,~-1.
These distributions evidently resemble those which are gene-
rally found to take place in the results of our experiments ;
and it is of the less consequence to represent them with greater
accuracy, since the minute steps, by which the scale of error
varies, have no sensible effect on the result, especially when
the number of observations is considerable. If, for example,
instead of two trials with the tetracdron, having the errors
1, 0, 0, — 1, we made two trials with a solid of 21 faces,
having the errors distributed cqually from 1, .9, .8.. to—1, the
mean error of all the possible combinations would only vary
from .375 to .349; and in a greater number of trials the
errors would approach still nearer to equality.

Now in order to employ any of these suppositions for the
purpose of calculation, it is only necessary to compute the
corresponding mean error, and to make it equal to the actual
mean error of a great number of observations. Thus, if we
cunsider each observation as representing a binary combina-
tion of counters or constant errors, in which the mean error
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is 4, and adding together the differences of the several
results from the mean, and dividing by tbeir numbers, we
find the mean error of 100 observations 1, we must con-
sider the original constant error as equal to 2’, which is

to be made the unit for 200 primitive combinations; and

£79 _ 19 _ 0426; and the probable error of the mean
/200~ 200

will be .0426 x 120 = 5.1”. For a quarternary combination,
if the error, which amounts to 3, be found 1’, the unit will
be ¥, and for n = 400, we have .03125 x § = 5.0°. And if

we set out with a large number m of combinations, the mean
error being "% = e, the unit will be e / (pm) — 1, and the
probable error of nm trials being equal to this unit multiplied
by .542 J :;, neglecting the very small fraction %s’ we

have 542 J Lo J (pm) = 542 p Jie = 8514 ¥ e:
which, if e be 1', and » = 100, gives again 5.1”. It appears
therefore that the supposition, respecting the number of com-
binations respresenting the scale of error, scarcely makes a
perceptible difference in the result, after the exclusion of
the constant error: and that we may safely represent the
probable error of the mean result of n observations, by the
expression .85 ﬁ , e being the mean of all the actual errors.

We might obtain a conclusion nearly similar by considering
the sum of the squares of the errors, amounting always to n 2*:
but besides the greater labour of computing the sum of the
squares of the errors of any series of observations, the method,
strictly speaking, is somewhat less accurate, since the amount
of this sum is affected in a slight degree by any error which
nay remain in the mean, while the simple sum of the errors is
wholly exempted from this uncertainty. In other respects the
results here obtained do not materially differ from those of
Legendre, Bessel, Gauss, and Laplace : but the mode of inves-
tigation appears to be more simple and intelligible.

It may therefore be inferred from these calculations, first,
that the original conditions of the probability of different errors,
though they materially affect the obscrvations themselves, do
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not very greatly modify the nature of the conclusions respect-
ing the accuracy of the mean result, because their effect is
comprehended in the magnitude of the mean error from which
those conclusions are deduced : and secondly, that the error
of the mean, on account of this limitation, is never likely to be
greater than six sevenths of the mean of all the errors, divided
by the square root of the number of observations. But though
it is perfectly true, that the probable error of the mean is
always somewhat less than the mean error divided by the
square root of the number of observations, provided that no
constant causes of error have existed ; it is still very seldom
safe to rely on the total absence of such causes ; especially as
our means of detecting them must be limited by the accuracy
of our observations, not assisted, in all instances, by the ten-
dency to equal errors on either side of the truth: and when
we are comparing a series of observations made with any one
instrument, or even by any one observer, we can place so little
reliance on the absence of some constant cause of error, much
greater than the probable result of the accidental causes, that
it would in general be deceiving ourselves even to enter into
the calculation upon the principles here explained : and it is
much to be apprehended, that for want of considering this
necessary condition, the results of many elegant and refined
investigations, relating to the probabilities of error, may in the
eud be found perfectly nugatory.

These are cases in which some little assistance may be
derived from the doctrine of chances with respect to matters
of literature and history: but even here it would be ex-
tremely easy to pervert this application in such a manner as
to make it subservient to the purpose of clothing fallacious
reasoning in the garb of demonstrative evidence. Thus if we
were investigating the relations of two languages to cach other,
with a view of determining how far they indicated a common
origin from an older language, or an occasional intercourse
between the two nations speaking them, it would be important
t» inquire, upon the supposition that the possible varietics
of monosyllabic or very simple words must be limited by the
extent of the alphabet to a certain number, and that these
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names were to be given promiscuously to the same number of
things, what would be the chance that 1,2, 3 or more of the
names would be applied to the same things in two independent
instances.

Now we shall find, upon consideration, that for » names and
n things, the whole number of combinations, or rather permu-
tations of the whole nomenclature, would be m=1.2.3..n;

and that of these the number in which no one name agreed

n—1 n—1 n—2 .
would bea“—m—al—n. 5 @R .G .. — .

a ; each term expressing the number of agreements in n,

n—1
n—1, n—-2... instances only, and being made up of all the
combinations of so many out of » things, each occurring as
many times as all the remaining ones can disagree. Hence we
may easily obtain the successive values of @ from each other,
the first being obviously 1, as a single name can only be given
in one way to a single thing, therefore,

ag=6-1-3=2

a,=24-1-6-8=9

a5=120=1-10-20~45=44

ag=720—1~15-40-135—264 =265

@, =5040~1~21—-70~315~924 - 1855=1854

as==40320— 1=28-112-630—2464 ~ 7420 - 14832=14833
09=362880— 1=36—168—1134— 5544~ 22260 - 66744 — 133497 =133496

aw=8628800—1—45—240— 189011088 ~ 55650—222480~667485 — 1334960
=1334961

From this computation it may be inferred, that, for 10 names,
the probabilities will stand thus :

No coincidence  .367880 One or more .632120
One only .367880 Two or more .264240
Two only .183941 Three or more .080300
Three only .061309 Four or more .018991

Four only .015336 Five or more .003655
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Five ounly .003056 Six or more .000599
Six only .000521 Seven or more .000078
Seven only .070066 Eight or more .000012
Esghs only .000012 Nine or Ten .0000003

The same results may be still more readily obtained from
the supposition that » is a very large number; for then,
the probability of a want of coincidence for a single case

being 2=, the probability for two trials will be ( - ‘)’, and

for the whole x,(:51)" = (1= 1)": but the hyperbilical

L]

logarithm of 1 - 1 beiog ultimately - 1 , that of (1~ 1 )" wil
be — 1; consequently the probability of no coincidence will be

1 e i s
Cissea = ~3678794: and if n is increased by 1, each of these
cases of no coincidence will afford one of a single coincidence :
f by 2, each will afford one of a double coincidence, but
balf of them will be duplicates; and if by 3, the same
pumber must be divided by 6, since all the combinations of
three’ would be found six times repeated. We have there-
fore for

No cenendns 35TRTO4 One or more 6321206 = 3 —
(L ZIRP N L3678794 Two or more 2642412 =1 4
Ta . aiy LIRBOG0T Three or more  ,0803015 = 'y —
Trres oain L1312 Four or more L0189883 = ¢y
b 0103283 Five or more .0036600 = g5
Pev o« l} 030607 Six or more L0N0H043 = 18y
Stemls L0ON510.0 Seven or more 0000834 = [ hg,
St on'y LO0NNT 30 Eight or more 0000105 = ; o},

It appears therefore that nothing whatever could be inferred
with respect to the relation of two lunguages from the coinci-
dence of the sense of any single word in both of them ; and
that the odds would only be 3 to 1 against the agreement of
tsu words; but if three words appeared to be identical, it
sould be more than 10 to 1 that they must be derived in both
case~ from some parcut language, or introduced in some other
xaoner ; six words would give near 1700 chances to 1, and
2 near 100,000 ; so that in these last cases the evidence would
‘» little short of alsolute certainty.

vor. 1L ¢
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In the Biscayan, for example, or the ancient language of
Spain, we find in the vocabulary accompanying the elegant
essay of Baron W. von Humboldt, the words derria, new;
‘ora, a dog; guchi, little ; oguia, bread ; otsoa, a wolf, whence
the Spanish onza ; and zazpr, or, as Lacroze writes it, shashp?,
seven. Now in the ancient Egyptian, new is BERI; a dog,
UHOR ; little, RuDcHI ; bread, o1k ; a wolf, vonsH ; and seven,
sHASHF; and if we consider these words as sufficiently iden-
tical fo admit of our calculating upon them, the chances will
be more than a thousand to one, that, at some very remote
period, an Egyptian colony established itself in Spain: for
none of the languages of the neighbouring nations retain any
traces of having heen the medium through which these words
have been conveyed.* '

On the other hand, if we adopted the opinions of a late
learned antiquary, the probability would be still incomparably
greater that Ireland was originally peopled from the same
mother country ; since he has collected more than 100 words
which are certainly Egyptian, and which he considers as bear-
ing the same sense in Irish; but the relation which he has
magnified into identity, appears in general to be that of a
very faint resemblance : and this is precisely an instance of- a
case, in which it would be deceiving ourselves to attempt to
reduce the matter to a calculation.

The mention of a single number, which is found to be indis-
putably correct, may sometimes afford a very strong evidence
of the accuracy and veracity of a historian. If the number
were indefinitely large, the probability that it could not have
been suggested by accident would amount to an absolute cer-
tainty : but where it must naturally have been confined within
certain moderate limits, the confirmation, though somewhat
less absolute, may still be very strong. For example, if the
subject were the number of persons collected together for trans-
acting business, it would be a fair presumption that it must be
between 2 or 3 and 100, and the chances must be about 100

. See the urucle on ¢ Languages’ in the fifth volume of the Supplement of the
Ency ica, p. 242, which is also reprinted in a subsequent volume of
t)ns work. (Vol 1. p 539, )—Note by the Editor.
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to 1 that a person reporting it truly must have some good
information ; especially if it were not an integral number of
tens or dozens, which may be considered as a species of units.
Now it happens that there is a manuscript of Diodorus Siculus,
which, in describing the funerals of the Egyptians, gives 42
for the number of persons who had to sit in judgment on the
merits of the deceased : and in a multitude of ancient rolls of
papyrus, lately found in Egypt, it may be observed, that 42
personages are delineated, and enumerated, as the judges
assisting Osiris in a similar ceremony. It is therefore per-
fectly fair to conclude from this undeniable coincidence, that
we might venture to bet 100 to 1, that the manuscript in ques-
tion is in general more accurate than the others which have
been collated ; that Diodorus Siculus was a well informed
and faithful historian ; that the graphical representations and
inscriptions in question do relate to some kind of judgment ;
and lastly, that the hieroglyphical numbers, found in the rolls of
papyrus, have been truly interpreted.

2. On the mean density of the earth.*

It has been observed by some philosophers, that the excess
of the density of the central parts of the earth, above that of
the superficial parts, is so great as to render it probable that
the whole was once in a state of fluidity, since this is the only
condition that would enable the heaviest substances to sink
towards the centre. But before we admit this inference, we
ought to inquire, how great would be the effect of pressure
only in augmenting the mean density, as far as we can judge
of the compressibility of the substances, which are the most
likely to be abundant, throughout the internal parts of the
structure.

Supposing the density at the distance r from the centre to
be expressed by y, the fluxion dy will be jointly proportional
to the thickness of the clementary stratum, or to its fluxion

® See No, XXXIV,, p. 78 of this volume. The very important principle of com-
jresmbahity of & chemically homogeneous substance had nat previously been noticed
-7 its effects estimated in the theories for cxplaining the incrense of the earth's density
n passing from the surface to the centre.-— Note by the Editor,

2
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— dz, to the actual density y, and to the attraction of the
interior parts of the sphere, which varies asﬁ’%rd—’; since the
increment of pressure, and consequently that of densi‘ty,‘ depends
on the combination of these three magnitudes: we_have there-
fore — ndy = yda:f y::d:; an equation which will readily afford
us the value of y in a series of the form 1 + az® + b2* + .. ..

In order to determine the coefficients, we must first find
fuerds

zx

(1 + az* + b2* + ...) dz we obtain

=+z+ % ar® + } b2® 4 . .., and multiplying this by

—ny = —n —nar® —nbz' — next -.
= 1 1 Lol 284 ...
_C+E1’+4—.5a a4 b +

1 1

+ 329 + 55 4
1

+ﬁb

Hence, by comparing the corresponding terms, we obtain

C = -n;

a = —.1666667n" Logarithm, 9.2218487
b = .02222222n* 8.3467875
c = —.00268960n* 7.4296867
d = .000308154n—* 6.4887660
e = —.0000340743n 5.5324269
f = .00000367495n~° 4.5652514
g = —.000000389086rn~7 3.5911459
{h = .00000004062n~* 2.6087]

[{ = —.00000000420n~° 1.6232)
[k = —.00000000043x~" 0.6335]

After the exact determination of the first seven coefficients,
the next three are obtained with sufficient accuracy by means
of the successive differences of the logarithms compared with
.those of the natural numbers.

It happens very conveniently, that the conditions of the
problem are such, as to afford a remarkable facility in deriv-
ing from tais series another, which is much more convergent,
and which gives us the hyperbolic logarithm of y; for since
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=jz4+ta 4402+ ...,
if we multiply this by dz, and take the fluent, we shall have
HLy = - (552 + 502 + 5502 + ..

We may determine the degree of compressibility corre-
sponding to a given value of n, by comparing the equation

-2 . d,fl’;:ﬁ or = dzp, with the properties of the

modulus of elasticity M, which is the height of such a column
of the given substance, that the increment of density y’, occa-
sioned by the additional weight of the increment 2’, is always

d rdx rdr
—n Y _ g faedr ) ng Seends
y xxr Ixr

4 2 d dr
to y, as 2’ to M, or z— = ¥ whence — —: = i’ consequently

in the present case we haved%" =:‘7’; and M = ;—', : and if we
make r =1 in the value of p, we shall obtain M in terms
of the radius of the earth, considered as unity. When y is
invariable, and n infinite, the density being uniform, p be-
comes 3}, and the mean density will always be expressed by
3p, since the attractive force is simply as the mean density :
and if we divide 3p by y, we shall have the relation of the
mean density to the superficial density. The results of this
calculation, for different values of n, are arranged in the table,
which will be found sufficiently accurate for the purposes of
the investigation, though not always correct to the last place
of figures.

. P =;- Sp, mean density y %P. comp. den,

® 33333 ® 1.0000=1: 1.0000 1.000 1.000
1 .30290  3.301 .9087 1.1005 .855  1.065
} .27735  1.803 .8320 1.2019 738  1.127
{ .25535  1.305 7660 1.3054 .646  1.185

] .23688  1.055 .7106 1.4071 575 1.24
i .22058 907 .6617 1.5111 510 1.30
i .20616  .808 .6185 1.6168 458 1,35
4 o194 .736 .582 1.72 419 1.40
o .183 .681 .549 1.83 377 1.48
i 173 .646 .516 1.94 .346  1.49
(4 .162 .617 .486 2.05 320  1.52)
(v .153 .594 .459 2.16 208 1.55)
iis 145 575 435 2.28 .28 1.57)
[se2 1 .5 .3 3.3 A7 1.8]
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The reciprocals of the mean density are inserted, on account
of the simplicity of the progression which they exhibit, being in
the first instance precisely equal to 1 +Y;—”, and varying but
slowly from this value.

Now if we suppose with Mr. Laplace, the mean density of
the earth to be to that of the superficial parts as 1.55 to 1, it
appears from this table, that the height of the modulus of
elasticity must be about .594 ; that is, more than 12 million
feet, while the modulus of the hardest and most elastic sub-
stances that have been examined, amounts only to about 10
million. It follows therefore, that the general law, of a com-
pression proportionate to the pressure, is amply sufficient to
explain the greater density of the internal parts of the earth;
and the fact demonstrates, that this law, which is true for
small pressures in small substances, and with regard to elastic
fluids, in all circumstances, requires some little modification for
solids and liquids, the resistance increasing somewhat faster
than the density ; for no mineral substance is sufficiently light
and incompressible to afford a sphere of the magnitude of
the earth, and of so small a specific gravity, without some
such deviation from the general law. A sphere of water
would be incomparably more dense, and one of air would
exceed this in a still greater proportion : indeed even the moon,
if she is really perforated, as has sometimes been believed,
and contains cavities of any considerable depth, would soon
have absorbed into her substance the whole of her atmosphere,
supposing that she ever had ome. It may be objected, that
the resistance of solids to actual compression may possibly be
considerably greater than appears in our experiments, since we
are not absolutely certain that they do not extend in a trans-
verse direction, when we compress them in a longitudinal one,
as is obviously the case with some soft elastic substances: but
this objection is removed by the experiment on the sound of
ice, which affords, either accurately or very nearly, the same
resistance to compression as a portion of water confined in a
strong vessel; and this it could not do, if the particles of ice
were allowed to expand laterally under the operation of a com-
pressing force.



No. XXVIII. IRREGULARITIES OF THE EARTH'S SURFACE. 23

Mr. Laplace’s conclusion, respecting the precise proportion
of the densities, is indeed derived from another supposition
respecting their variation, and would be somewhat modified by
the adoption of this theory; it would not, however, be so
materially altered, as by any means to invalidate the general
inference. It would therefore be proper to revise the calcula-
tions derived from the lunar motions and the ellipticity of the
earth, and to employ in them a variation of density somewhat
resembling that which is here investigated. Indeed without
reference to the effects of compressibility, it is obviously pro-
bable that the density of the earth should vary more consider-
ably in a given depth towards the surface than near the centre,
although the calculation, upon Mr. Laplace’s more simple
hypothesis, of a uniform variation, is much less intricate. It
would, however, be justifiable, as a first approximation, to reject
those terms of the series which would vanish if n and x were
very small, and to make y = 1 + a2¢; and indeed this formula
has in one respect an advantage over the series, as it seems to
approach more nearly to the law of nature, in expressing a re-
sistance somewhat greater towards the centre, where the density
is most augmented : we have then, if the superficial density be

1+1{a _ 4.9-1,
to the meanas 1 tog, ¢ = T+—a—4whencea = ‘\/q—.s’ and

ifg = 1.55,a = —.58, affording an expression which is, in
all probability, accurate enough for every astronomical purpose.

If the variation of density were supposed to proceed equably
with the variation of quantity, it would obviously be as the
square of the distance from the centre, and the density wonld
be as 1 — az*, the mean density being found at the surface of
a sphere containing half as much as the whole earth; and this
might be considered as the most natural hypothesis, if we dis-
regarded the effects of compression : but the arithmetical pro-
gression of densities, from the centre to the surface, seems in
every way improbable.

3. On the irregularities of the earth’s surface.

A. If we suppose the plumb line to deviate from its gencral
direction on account of the attraction of a circumscribed mass,
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situated ‘at a moderate depth below the earth’s surface, the
distance of the two points of greatest deviation from each other
will be to the depth of the attracting point as 2 to J/ 2.

. Let the magnitude of the additional mass be to that of the
earth as a to 1, and let its dis-
tance from the centre be b; then
supposing the earth a sphere, and
its radius unity, and calling the
angular distance of any poiut from
the semidiameter passing through
the mass r, the linear distance
from the mass will be ¢ (sin.’.r +

(cos. 2z — b) ’) = 4 (sin. 'z 4
cos.’z — 2b cos.z+ V) =
(1 4+ & — 2b cos. z); consequently the disturbing attraction

will be W‘T_azm: but the sine of the angle subtended by

the two centres of attractions will be to their distance b as sin.
z to the oblique distance ¢ (1 + & — 2b cos. z) ; it will

therefore be expressed by 5y +:b’i2' e o5 aod the sine of

the very small angular deviation of the joint force from the
radius will be to the line measuring the disturbing force as this
last sine to the radius, the difference of the third side of the
triangle from the radius being inconsiderable ; consequently the

deviation will be every where expressed by 7= “ab_ﬁ;'b:o.' D1=%

Now in order to find where this is greatest, we must make its
. . cos. xdx sin. x 2b sin. ad.
fluxion vanish, and 0 =i " p ey — 4 TH 8o = %m.:)r
cos. z (1 + b* — 2bcos. x) = 3b sin. *z, 3bcos. 'z — 2bcos.’x +

(1 + ) cos. z = 3b, cos.’x+l+,;wcos;a:= 3, and cos. z.

=J(3+[Lﬂb ")— L+ % but, making b = 1 — ¢, L2 %

25 - T ? 2b
141 =2c+cc

becomes . =1+ ;—;,and ¢ being very small, cos.
ill be e e gL  _
.rw:llbts/(4+b -1 26*2'*'4»'1"27"1-
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:‘—‘; whence sin. z = J/(1 —[l-.‘i::]’)= ‘/(l -1 +£_:)=
J:s)’“‘imPIYJQC, and ¢ = J/ 2 sin. z.

B. The sine of the greatest deviation of the plumb line will
amount to d = .385‘£m being the disturbing mass, and ¢ its depth.

Sineeeos.::l—g,2bcos.:=2b— —,andl+bb-—

BT (= +5=+5 =1 and absin.x
2 /b aJb
heamu‘““):whenced=‘/(%”)c, i .38.'3 pon

or umply .385 5‘; also a = 2.618d, and ¢ = / (.385 -;)~ If

the denmsity were doubled throughout the extent of a sphere
touching the surface internally, the radius being ¢, we should
have @ = A andd = .385c, and ¢ = 2.6d : but this is a much
greater increase of den:ity thanis likely to exist ona large scale: so
that ¢ must probably in all cases be considerably greater than this-

C. The greatest elevation of the gencral surface above the
sphere will be 3, on the suppoeition that the mutual attraction

of the elevated parts may safely be neglected.
The fluxion of the elevation is as the fluxion of the arc and
as the deviation d conjointly ; it will therefore be expressed
. 1
by ‘+:d‘“':‘; o Now the fluxion of“/(l T8 " e
3 sin. sdr
(1 + 8 = 2hoos. 1,

w—4 ——
- a
"ube.luill-:bm) and while cos. z varies from 1to~1,

this fluent will vary from-;;tol—;—b, the difference being

« (- ) =G -y k) = a (BRE) or simply
2, since ¢ is an extremely small fraction. Tlus quantity com-

" consequently the fluent of the elevation

prebends indeed the depression on the remoter side of the
opbere, which would be required to supply matter for the ele-
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vation ; but it is obvious that such a depression must be wholly
inconsiderable.

D. The diminution of gravity to the centre at the highest
point is 2%, while the increase from the attraction of the dis-
turbing mass is nearly =, which is greater in the proportion
that half the radius bears to c.

E. The increase of gravity, at the point of greatest devia-
tion, is to the deviation itself, or its sine d, as J 2 to 1.

For the deviation is the measure of the horizontal attraction
of the disturbing mass, which is to its vertical attraction as

gin. z toc, or as 4/ 4 to 1. Thus if d were 5", or the
i .01 1
206265 ~ 29170

1 "o .
55310 OF 1.5 of time in a day. It is true that a

part of the deviation might depend on a defect of density as
well as on an excess ; but this defect could not amount to any
great proportion of the whole, while the excess above the gene-
ral density might easily be much more considerable, so that the
acceleration of the pendulum could scarcely be less thun a
second in a day, if the greatest deviation of the plumb line
were 5" : and if the deviation were 5” at any other place, there
would be a greater acceleration than a second at a point more
or less remote from it.

5
206265

horizontal force would be , and the acceleration

-of a pendulum

F. If there were an excess of density on one side and a
deficiency on the other, so as to constitute virtually two
centres of attraction and repulsion, and supposing their dis-
tances to be equal, and such as to produce the greatest devia-
tion, if the excess of density were twice as great as the de-
ficiency, a deviation of 5" would correspond to an acceleration
of half a second ; if three times as great, to §; if four times,
to % ; and if five, to a second.

It may perhaps be considered as an omission in this calcu-
lation, that the attraction of the parts of the earth’s surface,
clevated by means of the irregular gravitation, has not been
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included in it. But it depends on the supposition that we may
adopt respecting the cause and date of the irregularity, whe-
ther or no we ought to consider it as likely to have occa-
sioned such a general elevation; and it does not appear that
the result of the computation would very materially alter our
conclusions, though it would be somewhat laborious to go
through all its steps with precision. It would indeed be so
much the more superfluous to insist on this minute accuracy,
as variations so much more considerable in the form of the
earth’s surface are commonly neglected : for example, in the
allowance made for the reduction of different heights to the
level of the sea, which has usually been done without any con-
sideration of the attraction of the elevated parts, interposed
between the general surface and the place of observation. It
is however obvious, that if we were raised on a sphere of carth
a mile in diameter, its attraction would be about s of that
of the whole globe, and instead of a reduction of whe in the
force of gravity, we should obtain only s, or three-fourths
as much: noris it at all probable that the attraction of any
hill a mile in height would be so little us this, even supposing
its density to be only two-thirds of the mean density of the
earth : that of a hemispherical bill would be more than half as
much more, or in the proportion of 1.586 to 1; and it may
easily be shown, that the attraction of a large tract of table-
land considered as an extensive flat surface, a mile in thick-
ness, would be three times as great as that of a sphere a mile
in diameter: or about twice as great as that of such a sphere
of the mean density of the earth: so that, for a place so
situated, the allowance for elevation would he reduced to one-
half: and in almost any country that could be chosen for the
experiment, it must remain less than three-fourths of the whole
correction, deduced immediately from the duplicate proportion
of the distances from the earth's centre.  Supposing the mean
density of the carth 5.5, and that of the surface 2.5 only,

the correction, for a tract of table-land, will be reduced to

25 29 66
-7 5% 9 & of the whole.



28 ON THE ROLLING PENDUL&M. No. XXVIII,

4. Euler’s formula for the rolling pendulum.*

I beg leave to observe, in conclusion, with regard to Mr.
Laplace’s theorem for the length of the convertible. pendulum
rolling on equal cylinders, that its perfect accuracy may rea-
dily be inferred, without any limitation of the form of the pen-
dulum, or of the magnitude of the cylinders, from the general
and elegant investigation of Euler, which also affords us the
proper correction for the arc of vibration. This admirable
mathematician has demonstrated, in the sixth volume of the
Nova Acta Petropolitana, for 1788, p. 145, that if we put % for
the radius of gyration with respect to the céntre of gravity, a
for the distance of the centre of gravity from the centre of the
cylinder, ¢ for the radius of the cylinder, A* for %% 4 (a—c),
and & for the sine of half of any very small arc of semivibra-
tion, we shall bave, for the time of a complete oscillation,

<h wbb (hh + 4ac) . . _ wh
V@) T T 4k (3ag)’ and ultimately, if b =0, WICTD)

which, for a simple pendulum, of the length a, k, and ¢ both

vanishing, becomes 4/‘(/‘29)’ and for any other length J, :;é:)’
Jl wh

consequently, making —>~ Vg = Jaag e have ¥/ 1 = J , and

al = hh = k* 4 a* — 2ac + ¢*. Now if we find another value
of a, which will fulfil the conditions of the equation, all the
other quantities concerned remaining unaltered, and add the
two values together, we shall have the distance of the centres
of the two cylinders corresponding to the length 7 of the
equivalent pendulum; but since a*— (I+ 2¢) a = —&* - &,
we have a - {l —c =+ ..., and a = +c+ V...,
so that the sum of the two values of a must be 74 2¢, that
is, the distance of the centres of the cylinders must exceed the
length 7 by twice the radius, and must be precisely equal to
" the distance of their surfaces.

Believe me, dear Sir,

Very sincerely yours,
THoMAs Youne.

only,

Welbeck Street, 29th Dec., 1818,

* Supra, No, XXVII,, p. 1.
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No. XXIX.

A POSTSCRIPT
ON ATMOSPHERICAL REFRACTION,
ORIGINALLY APPENDED TO THE PRECEDING MEMOIR.

Reprinted, with corrections and considerable additions, from ¢ Brande’s Quarterly
Journal of Science’ for 1821, vol. xi. p. 353.*

1. A siuPLE and convenient method of calculating the precise
magoitude of the atmospherical refraction, in the neighbour-
hood of the horizon, has generally been considered as almost
unattainable ; and Dr. Brinkley has even been disposed to
assert the * impossibility of investigating an exact formula,”
that should represent all its variations, notwithstanding the
“ striking specimens of mathematical skill, which,” as he justly
observes, ““ have been exhibited in the inquiry.” We shall find,
however, that the principal difficultics may be evaded, if not
overcome, by some very easy expedicnts.

2. The distance from the centre of the earth being repre-
sented by z, and the weight of the superincumbent column by
y, the actual density may be called z, and the element of y will
vary as the element of z, and as the density conjointly ; conse-
quently, dy = — mzdr; the constant quantity m being the

® This was the first of a series of investigations on Refraction, which appeared
amongst the ¢ Astronomical and Nautical Collections * which Dr. Young coutributed
to this Journal: they lel to a very acrimonious controversy between him and
Mr. lvory, to which several references will be made in the articles which follow. In
the Nautscal Almanac, which Dr. Young edited from 181K to the end of his life, there
1o goven a table of refractions calculated upun these principles, the refractions

{which are nearly the same as those given by the French tables) being calculated by
the forroula

rr r? . rd

o5 4 247 + 500, 4+ 360007 4+ 3600 (1235 4 25, 4 &,
] a [ &

woere roas the rfraction, v the sine, and s the cosme of the altitule.—Note hy the

) I
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reciprocal of the modulus of elasticity. The refractive density
may be called 1 + pz, p being a very small fraction ; and it is
easy to see that the perpendicular u, falling on the direction of
the light, will always vary inversely as the refractive density,.
since that perpendicular continually represents the sines of the
comsecutive angles, belonging to each of the concentric surfaces
at which the refraction may be supposed to take place (Nat.

Phil. IL p. 81); and u = —Tp—' s being a constant quantity.

The angular refraction at each point will obviously be directly
as the elementary change of this perpendicular, and inversely as
the distance v from the point of incidence ; whence the fluxion

of the refraction will be %‘ = dr, as is already well known.

3. For the fluent of this expression, which cannot be directly -
integrated, we may obtain a converging series by means of the
Taylorian theorem ; but we must make the fluxion of the re- .
fraction constant, and that of the density variable ; so that the

d3g 3 .

o ﬁ+. .+, U being
the initial value of u, when r = 0. Now the whole variation,
of which u is capable, while z decreases from 1 to 0, extends

equation will be =u d';' C .y +

from -I%Pto 8 or, since p is very small, from s — ps, to s; and

. d .
dr being = 5, we have the equation ps=vr + %',’_,

But v=J (.’L"— ’)’ dv = Id::"d. and d_ﬂ = f. di -

dr v’ dr
and dz being = ——, and du = — psdz, dr m;u. g—‘:.

4. We must now determine the value of the density z, which,
when the temperature is uniform, becomes simply =y; but for
which we must find some other function of y, including the
variation of temperature ; and we may adopt, for this purpose,
the hypothesis lately advanced by Professor Leslie, in the article
Climate of the Encyclopadia Britannica, and suppose the density
to be augmented, by the effect of cold, in the proportion of

1to 144 (; - z), n being somewhat less than +4 ; and since
the density is as the pressure and the comparative specific
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gravity conjointly, we have z = y (l+n [l— —z] )’ _;_=

dz 2d dz
) 4+ 2 oz, dZ =2 _mde dy _ ¥
+ » 45 =5 ¥ - ndz,am'ldz—x

dr
5 comequently = 5 (14 24 2 ) (&

mpsz

dr .
- = -;:z— - ;2', - ;'Z But instead of retracing the
stepe of the calculation with these corrections only, it will
be more satisfactory to extend the general theorem somewhat

further without confining it to a particular law of temperature.

5. For this purpose we may make :—i ={, :"f =y, %: 48
and we shall have, for computing the coefficients of the series
dv

o+ '—;—+...,the values

dr=—(:;;

dn_ .

4 =7

dr o .

&r_-p‘z’

dx=—dl=_—r

dr  pair ps’

dy s -3

dr " dr T ps ?

(b_ 143 .

& e

de x 4 {r dd
da’—' = d:-;; +d1‘. W; —dz —.;;;" - vdr; and —d;uia
[ £ Lo Ir

+ 50 + —ve3 —v. Now since m is about 766,

it is obvious that the second term, containing its square, may be
neglected in comparison with the third, since the other quan-
tities concerned in these terms can never differ materially from
each other : for the same reason the term v may be omitted, as
not being divided by p, and u may be considered as equal to s,
and its fluxion neglected, as well as that of x, which may be
called =1; and we may proceed to take the fluxion of

dds Tr v 7 o T dde _ dF
dr T mpe: + mpatz'  mpn: +;-i»}a'}' # whence d dr* T mpaz
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7dz |, fdv+vdl  2Qedz & T T

mpsz® + mpisizt | mp'sizd nd dr® = mpsz + mpren mplsiz? + apter u’p’a’z’
3 .

(;—‘— )+ mp,:,z,.q.mi?f,z—,. It will now be convenient to

divide " into the two portions ¢”, and {’, ¥*, in order to obtain
that part of the sixth term which is mdependent of v; the

fourth will then become d—" = ”::u +z P’t’z’ (WP‘Z ) +
2 '’
(ﬂf;:z + mpf =+ mp,‘,z,) vt. The whole of the fluxion of the

former part will contain v, which will disappear again in the
next term, being changed into dv, and the »* of the second

part will become 2 :—:—:— in the sixth term. We shall therefore

have for the case of the horizontal refraction, when z = 1 and
a=1 (Bv g, r,dz ¥ dv oz dv T dde )

s = \ mpdr mp'F mpt dr — mp'dr’ dr T ompt" dr%
dv C"
wr + Zdr’ mp vmp‘+mp'
. It is obvious. that since (:l—d;—: = (? . mplu + '-.PZTS,;) v, the quan-
tity £, must be derived from it by taking the fluxion with

respect to v only, and must be equal to d—d—v . :;r’ which is the

product of the second and third coeﬂiclents. The fluxion of
this quantity, d¢”, is also capable of a simpler expression ; for
d(' dv {’ do
dvdr T de
Q@ b g Y o

; whence 37— wir & v dr‘+—'(F=
7 dv (” do Y dw 7’0 do T dw ¥ dv

since ¢’ will in general be divisible by v, " =
and dz' dZ’ t't:v

L4
T Rt Rt TR SN g A
Consequently .
ddv (” do U dw Z' do Y  dv 27 do
P S\ Umpdr ¥ vtmp - dr + Tt vmp® * dr + vmp® it wp®® dr +

; ddv d:_;_ dt oz, 4y 4\ dw (37
©dr dr® mp T ompt ‘mpd) Tart mp

6(’ dv t’ t ddv
ompdre

6. We may next proceed to substitute, in these general ex-
pressions, the values derived from the various laws which mnay
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be supposed to govern the variations of tempemtiu’e: observing
first that in general

m =766, p=.000 2825 = TR .whence

=4.621, —5 =21.3536, —; =16358 = 72052,

=
=57 907 320.

-!I"

’.apl

{l'

7. (A) If the temperature were uniform, we should have
y=2zdy=ds, {=1,%=0, {" =0, d_ _7‘_s=‘£1_,;
and when s = 1, 3.621.

d% [

ir* = mp's

d% 1 1 20° .

i = o (5= 1) + s orif v = 0, 16358 x 3.621.
= (5= 1) (& - 1)- v = 3621 (6x 57907320
x 3.621 4 16358) = 5524050000 ; 545 of which is 7672300.
Hence, for s = 1, we have the equation .0002825 = 1.8105
r + 2467 r* 4 7672300 »* + ..., in which, if we put r* =
.000130, we shall have .0002825 =-.0002939 +...; which is
too much : then taking * = .000120, we have .0002825 =
.00021726 4 .00003552 + .00001315 4 [.00001647] : and
this is somewhat too great a remainder ; for the quotients of the
terms being 6, 3. . ., the remainder ought not to exceed the last
term ; =o that * must be about .000121, and r = .0110, or
37’ 50”, which is too great by about one ninth. By the assist-
ance of this scries we might easily compute the refraction upon
the hypothesis of Professor Bessel, who supposes the variation
of density to follow the same law as if the temperature were
uniform, but alters the value of m so as to accommodate it to
the actual magnitude of the refraction in low altitudcs.

(B) In Professor Leslie's hypothesis, we have

45

R = a—’ = .09
(=E+'£ 7; the initial value " =1 + 2n = 1.18
y n,, 'layy n{ ! 2ny ny
=7 #)-nG+T+ )

\(»L. 1L D
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£~ =2 (L+4n) (1=7) = 22 (20-+8n)

d%” 142n—(2n48u%) ~ 1—8a*

rhe mps? v= mpts® v.

z. 4’y dv d’t’ dy av dz d't’ d{ ( +( o
3 =

Wttty

d'(’ dv T dv Z’ l+2n
- -t g

ar —{v a7 wv d(’
(v"'—‘ az p‘ a: C’

r. u"':{;;(1+8n)——(4n)} st {§(2+1;1n')+%

(14 8n) }+,,=—,- (1+44n) (2n+8n%) =;,'§. (_ ¢ (14-8n)
+ & (4n) +2+14n-Y (14+8n) +2n4+16n*+ 327°%)
=p-':—:-'(—l—8n—2n—16n’+4n+16n’+ 16n*+ 2 + 14n—1—8n
~2n—16n"+2n + 160" + 32n%)
ot
=P“§. (48713)

%= 1 { (2n+8n,)(.+zn ) 1+z,. )l ."

mps®

(48n° ~(4n+416n*)4-2 +4n)
l-—8n’(l+2n_ ) 2+16n"+48n®

= “mps* \ mps mp*s®

""’ ""2"—-1) .(144::’ 12n—48a*+6+12n)+ ‘+p2"

1) ':;,:- 1+2n 2n+8n') (1+2"_1)_ —(6—48n* 4

1oty (122 1) (15,

We have then, for the case of horizontal refraction,
=4.453=2 x 2.2265; v =207 x 4.453 = 68113 =24 x

2838, and & = (4.453)" x 57907320 X 5.7162 + 4.453x

15296 * = 7657200 000 = 720 x 10635000: consequently,
.0002825 =2.2265 r*+ 2838 r<+10635000 r¢; now if r*=
0001, we have .0002825 = .00022265 + .00002838 +
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.000010635 [+ .000020935] : consequently, .0001 is too little
for #*, and we may try .00011, giving .0002825 = .00024491
+.00003434 + .00001420 [-.00001095]. But in order to
keep up the probable sequence of the progression, the remainder
should be about equal to the last term, or about. 000011, and
.0000209 should have been diminished byabout .00001 instead
of .0000318; so that we must take .000103 as the true
value of 7* on this hypothesis, and r =234’ 53", which is too
great by about 1’; a difference by far too considerable to be
attributed to the errors of observation only ; and we must infer,
that the law of temperature, obtained from the height of the
line of congelation, is not correctly true, if applied to elevations
remote from the earth’s surface. If indeed this law were fully
established, and capable of being applied, with any little modi-
fication, to the exact computation of the refraction, it would be
necessary, for the lowest altitudes, either to compute a greater
pumber of the fluxional coefficients, or to divide the refraction
into two or more parts, and determine the successive changes of
density required for each of them. We should also have for
finding, on this hypothesis, the height z, corresponding to the
pressure y and the denmsity z, the expression mz — m = 1—
LN s UALTIR 22

T q  22—qy(l-2z) z4+n—na2:
and the actual state of the atmosphere would probably be very
well represented by this formula, taking n = .1 or .11, rather
than .09.

Yy being:

«and ¢"=1 4 4n*:

(C) Professor Bessel’s hypothesis is also found to make the
horizontal refraction too great. Mr. Laplace’s formula, which
affords a very correct determination of the refraction, is said to
agree sufficiently well with direct observation also ; but, in fact,
this formula gives a depression considerably greater than was
observed by Gay Lussac, in the only case which is adduced in
its support ; and the progressive depression follows a law which
appears to be opposite to that of nature, the temperature vary-
ing less rapidly at greater than at smaller heights, while the
observations of Humboldt and others seem to prove that in
nature they vary more rapidly. Notwithstanding, therefore,
the ingenuity, and even utility of Mr. Laplace’s formula, it can

D2
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only be considered as an optical hypothesis, and we are equally
at liberty to employ any other hypothesis which represents
the results with equal accuracy; or even to correct our
formulas by compa.rison with astronomical observations only,
without assigning the precise law of temperature implied by
them.

(D) We may compute the effect of a temperature supposed
to vary uniformly with the height, by making z=y (1+tzx—f),

d zd
or =yz'; we have then§=1+tz—t, or zt, and d——i—— .'/z

=tdz, or =tz*~'dz, which are initially the same. But tdr=

~ tdy dz z2dy dy de 2z _ ty _mez-tyy dy
v ,andy e ,whenced—y=§-—;£ wyz ? and ;7
=y = mydztmedy o yemedz=tydy,
—g T mzz—tyy’ consequently d{— mzz—tyy 2myz.(wz“.'/.'/)"

i ity §- %, w05 (S2F — 3m 22

(g+z-2p 4 2= (c R e

m—¢

£+20 (- 1)}'—"—{(2? -1 [32=2@-1). -1
;T”' Now, if we suppose the temperature to vary 1°
1

1 L.
in 300 feet, we have Wo 306 = isoo00» for the variation of

density depending on temperature in 0—-— of the earth’s
radius z; hence ¢ should be 139, and ¢ = % =1.26,

whence ;C- =5 .822, while the phenomena of refraction require

P .
this quantity to be about 6. Thus, in Bradley sapproximation,
we first take ,.=P_vf, and then r=ptan(ZD— ) (- -2

(I+:-';)> very nearly, or pobs_Sp 31::.

and vr = ps- — -
v v 8
3r%, or, while s remains small, ps=vr4 3.—, which is suffi-
ciently accurate near the zenith. If we make %’ = 6, we shall

have {=1.3, and ¢ =176, which is equivalent to a depression
of a degree of Fahrenheit in 227 feet : we sha]l then have, for { y

~1.3% .3x1.6 % = — 624—,and G =(1.3-.624) =
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= .676 -; == 676 x 16358, and % of this, or 1854, is the co-

efficient of the third term. With the same value of , taking
n =.15, this coefficient would become, upon a hypothesis similar
to Professor Leslie’s, 2236.

8. It is not possible, in the present state of our knowledge of
the subject, to determine, from observation, either the refraction
with sufficient accuracy to enable us to compute from it the law
of the variation of temperature, or the variation of temperature
with sufficient accuracy for computing the refraction. Con-
sidering, indeed, how improbable it is that the upper regions of
the atmosephere should be of the same temperature as the
surface of the hills on the same general level, we could scarcely
expect the agreement to be more complete than these computa-
tions make it; and it is perfectly possible either that ¢ may be
as great, at 176, or that n may be .15: but we cannot deter-
mine from the observed refraction which of the laws of variation
is capable of representing it with the greatest accuracy : much
less should we be justified in believing, because Mr. Laplace’s
formula happens to represent the refraction very accurately,
that the temperature varies the less rapidly as we ascend higher,
It is, however, perfectly justifiable, for the purposes of astro-
nomy, to adopt the form of the equation which is shown by these
examples to be converging, and to correct the coefficients by an
immediate comparison with observation ; and in this manner it
bas been found that the formula employed in the Nautical
Almanac is abundantly sufficient for the purposes to which it

is applied. This formula is .0002825 =v -+ (2.47 + .5¢%)
::+ 3600 v :—:+3600 (1.235+ .25 v’):-:; its results are almost

identical with those of the French tables, exccpt in the imme-
diate neighbourhood of the horizon. But the effect of a
difference of temperature at the place of observation is not so
correctly represented by any of the tables commonly employed,
and requires to be separately examined.

9. The terrestrial refraction may be most easily determined
by an immediate comparison with the angle subtended at the
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earth’s centre, the fluxion of which is —-. and Ew ini-
tially the first part of the coefficient of the second term of the
series already obtained, and is equal to about 6 ; so that this
angle, while it remains small, is six times the refraction: com-
monly, however, the refraction in the neighbourhood of the
earth’s surface is somewhat less than in this proportion.

10. The effects of barometrical and thermometrical changes
may be deduced from the fluxion of the equation, if we make
m, p, and n, or rather ¢, vary: and for this purpose it will be
convenient to employ the form ps = vr 4 (2—(71_'—)1” - ;) 7, the
value of the fraction, if we neglect the subsequent terms,
becoming 8.41; and this expression is sufficiently accurate for
calculating the whole refraction, except for altitudes of a few
z o which

degrees. Now the fluxion of p = v +(2 (m - ‘)P 2

,wema.ycallp v—+(__._)_,,sdp (+ ___5.‘.‘_ dr —

dm—dt

Z(oo%, dp) the coefficient of dr being equal tn e .;’

d dm—dt
and (2 — D) ¥=(p+5) F+m(5r )i v bemg341

and m—t¢, on thls supposition, 519. The proportional variation of

p or d—: » will be stz for every degree that the thermometer varies
from 50°; and - being also s, - w111 be ;o 9 ” 500 =.003.
The variation of t can only be determmed from conjecture ; but
supposing the alteration of temperature to cease at the height
of about 4 miles, it must increase, with every degree that the
thermometer rises at tlle earth’s surface, about by, and

% being ey - will be 5rgoaizo = -004. The alterations of

the barometer wnll affect p only,%’being s for every inch
3958 x5280x12
13.57hd  ?
being the height of the barometer, and d the bulk of air com-
pared to that of water, that m must diminish, as well as P
when the temperature increases ; and the correction for ¢ being

above or below 30. It is evident, since m =
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subtractive, the three variations will co-operate in their effects;
but the proportion will be somewhat different from that of the
simple densities. If we preferred the expression derived from
Professor Leslie’s hypothesis, we should merely have to substi.

tute l’:;‘ for .'.le.' and the variation depending on the law of

temperature would become about § as great. It must, however,
be limited to such changes as affect the lower regions of the
atmosphere only, its *argument” being the deviation from the
mean temperature of the latitude; but even in this form it
cannot be eatisfactorily applied to the observations at present
existing ; although it appears to be amply sufficient to explain
the irregularities of terrestrial refraction, as well as the uncom-
mon increase of horizontal refraction in very cold countries:
and we may even derive from all these considerations a cor-
rection of at least half a second, or perhape of a whole second,
for the sun’s altitude at the winter solstice, tending to remove
the discordance, which has so often been found, in the results
of some of the most accurate observations of the obliquity of
the ecliptic.

The preceding Memoir was severely criticised in the September number of the
Plulisophical Magazine for 1821 (vol. xxxviii., p. 167), by Mr. Ivory, who disputed
the assumptions which were involved in the investigation of the series, denied the
sufficiency of its convergency, at least for low altitudes, and asserted that the formula
and the table of refraction deduced from it were entirely empirical : he contended
als. that the method of series was only resorted to in the infancy of analytical science,
when other expedients were unknown, and that it was necessarily inferior in elegance
as power to the nwthods which Krump, Laplace, Bessel, and other analysts had
employed 1n these inquiries.

'Fu these otwervations Dr. Young replied in the Quarterly Journal of Science
fr IK22  vol. i, p. 890), in a tone of considerable severity. By a modification of
his methd. dividing the operation into two parts, he showed that the serics might be
male suthoently convergent, even for extreme cases; and proceeded farther to prove
ita cajacty, by showiog in what manner the actual density of the air, at a given
berght, mizht be delucal from a table of refractions.  As the substance of this
Agsiozy, as it was termed, is involved in the articles which follow, it has not been
thought bessary to repriut it.—Note by the Editor.
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No. XXX.

AN EXTENSION OF THE INVERSE SERIES FOR

THE COMPUTATION OF REFRACTION,
TOGETHER WITH A DIRECT SOLUTION OF THE PROBLEM,

From ¢ Brande’s Quarterly Journal’ for 1828, vol. xvi. p. 189,

ConsipErING the acknowledged and increasing importance of
the accurate determination of astronomical refractions, it may
not be thought superfluous to attempt to confirm and extend
the mode of computation, which has been adopted for the Table
of Refractions printed in the ¢ Nautical Almanac,” and at the
same time to compare its results, in the most unfavourable case
for its application, with those of the direct method, which, in
that case only, are very readily obtained.
If » be the refraction, =z the density, =1 — o

y the pressure, z the distance from the centre,
u the perpendicular falling from the centre on the direction of

the ray,
v the distance of this perpendicular from the point of refrac-

tion,
s the initial value of u, or u”; we shall have (No. XXIX. p. 30.)
dr = dy = — mazdz, -

v ’
_ l+p

T2ps s=(1 +p'_pz) s = (14 px) s, and, p being a
very small fraction,
V= 2 ~u? = 2 =5 —2pxs, -}Z =

dz _ —v dy _ -
dr = ps dr = ps
i _ 2o

T = mpe We may then put, in order the better to observe

the progress of the subsequent operations,
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do

& =Z

:-::=‘+Yv

%

H=2+*+ X

d¢

FEERES SRR

a3
F=Z2+*+ X+ * + U
%
dT.=',+Y"v+'+V’v’+...
D=z 4"+ X+ ..
%:—:='+Y'"v+...

& "o

d_f-;=Z +o-'o

It will be convenient to denote the successive results of the
differentiation of any quantity, Z, ¥, X, with respect to y or z,
which introduces a new power of v, by Z\v, Z*, Yv, Vo',
and so forth ; we shall then have

zZ-z Z-YZ
V-2, Y=2XZ+2,=QYV,Z)+(Y,Z+V)=3V,Z+ 11
X=V, X'=3VZ+Y,=(3Y,Z)+(BY,Z+3Y,V+2V,Y)
V-=X,=%, =6Y,Z+5V,Y
U=V, V=4UZ+X'= (41LZ) + B6Y.Z+ 6L,Y) +
BY,Y+5¥)=10Y,Z+11 Y,V 45V}
2 =YVZ=3VZ'+Y'Z
Y =2X'Z+2",=12Y,Z2'+10Y,YZ
+(3Y.2'+6Y,YZ)
42V, YZ+ V) =15Y,Z'+18Y,YZ4 I
X" =3V Z+ ¥ =(30V,2'+33Y,VZ+15Y}Z)
+(15V,2* +30Y,YZ)+(18Y:Z
+18V,¥Z +18Y, 1Y)
+ (31,1
SV 48V, Y Z4 33122421 1}
70 Y Z-LY,ZHSF YL+ VL
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V=2 X"Z+Z"\=(90V,Z*+162 Y, Y Z*+66 V2 Z'+42 ¥, V*Z)
+(15V,Z5+45 ¥, YZ)+(18 V2 2*+36 ¥, V*Z

+18Y,¥Z?) +(BV,V*Z
+Y
=105 ¥,Z%+225 ¥,V Z*+84 Y 3Z*+81 ¥, V*Z
+ ¥

ZI”’ = YIIIZ.

If we now select, from these general values of the coefficients,

those which are concerned in the horizontal refraction when
do r*

v =0,and s = 1, we shall have, instead of ps = (T: g+..0
re

putting ' = 7,
. dov v’ v " ds o r'®
l=a—r—2- + P35 + d?p’iﬁ-}-...,or

Z , Zl , Z” B ZI’I ), nn ,
1=3r+5p" + 1P + 55 P + seamse P+
in which we must substitute the values of Z*, derived from the
particular hypothesis respecting the constitution of the atmos-
phere that we may choose to adopt.

Ezample A. The simplest application, that can be made of
this series, is to put, instead of Professor Leslie’s hypothesis of
2* = y (n + z — n2*), merely 2* = y, whence { = ?I—Z- = 2z, and

2z 2

mpsz = 5 = mpa = 83 consequently dZ = 0, and the
series stops at the second term, assuming precisely the form
which has been actually employed, as an approximation for de-
termining the effect of a change of temperature. (No. XXIX.)
To inquire what would be the physical conditions, that would be
implied by this equation, would be to anticipate the contents of
a very elaborate memoir, which is probably now in the press,
and in which the author bas deduced some very convenient and
elegant expressions, when considered merely in a mathematical
point of view, from a law of condensation which will scarcely
be admitted by natural philosophers in general, as applicable to
the phenomena in their whole extent.*

* This refers to a very elaborate Memoir on Refraction by Mr. Ivory, which had
been read to the Royal Society, but which was not yet published : it appeared in the
Philosophical Transactions for 1823.—Notc by the Editor.
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Example B. We may also obtain a finite inverse series, nearly
resembling that of the ¢ Nautical Almanac,” from the equation
y = .57 + .432% which is obviously impossible in nature, since
it supposes a constant pressure after the density has vanished.
A result, however, nearly identical, may be deduced from the
supposition y = 3 .4z°—4. 12* + 1.72%, which implies an at-
mosphere terminating at the height of about 14 miles ; although
the series thus obtained would extend to a fifth term, instead of
ending at the fourth, but without producing any material dif-
ference in the result. Considering, indeed, the analogy between
logarithms and high powers, it is not improbable that the true
value of y might be very correctly expressed by a series of
this form, however complicated it might appear at first sight.
The value of = and the height 4 = 20900000 (z—1), in feet, might

be found from the fluxion dz = = - 6.8dz — 12.3zdz + 6.8 2dz,

and r -1 = 2 (—6.82 4 6.152* — 2.272* + 2.92), or
A =27300(2.92 — 6.8z + 6.152* — 2.272°) ; which becomes
21300, when the density z is reduced to %; and the pressure
y = .444.

FErample C. A. As the most unfavourable specimen of the
application of this method, we may take the case of an
equable temperature, at the horizon: and first suppose, with

Laplace, that m = 798, and ; = 3403, so that _ = 4.2624,

Z = -_t’ —1 = 3.2624, since z is here =y, and { = 1;
11 4.2634 2., 3 4

w p= T Hizph hisp by and Fo=p By
Hence we have YZ =
1= 1.63127" + .5794r"* 4 .4603r"% + .5093r"¢ 4-.6517 7" + ...
Now the value of 7 cannot be very accurately obtained from
these coefficients, without a liberal employment of the method
of logarithmic differences, finding the results derived by it
from the first three, the middle three, and the last three terms,
and comparing these with each other: and in this manner it
swem- natural to suppose that we might casily come within

) s

L% = Z', and the equation becomes
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about 5%0 of the truth.* The best inference of this kind, how-
~ever, that has been obtained, was r = 40’ 15”, which is too

much by about =

If still greater accuracy were required, we mlght compute a
greater number of the coefficients of the series, or we might
separate the computation into two or more parts; but it would
be a little troublesome to adapt the new values of Z, and its de-
rivatives, either to the diminished magnitude of the density z,
or to a value of p diminished in the same proportion ; so that if
the actual density at the time in question were called unity, the
refractive density might still be truly represented by 1 4 p;
observing also to make the remaining portion Az equal to
unity : and in this case the values of Z, and of its powers only,
would require to be changed in the subsequent computation.
This operation has been somewhat more negligently performed
in the Memoir just referred to ; but its object then was merely
to show the convergence of the series, and the object was
obtained.

n. With the values m = 766, p = 355, and 5. = 4.621,
we obtain Z = 3.621, ¥ = % z - YZ = 17.190,
S J— 452.916  ,,, _ 31290 o _ 8714095
z"=2¥Z'+ V'Z="25 z > and 2= 202

and for the equation 1 = —2- r + g pr* 4+ ..., we have

1 = 1.81057' +.7162r'* +.6290r'3 + .77607"¢ 4+ 1.023 17" + ... ;
and if we make 7' = 44, we shall have the true sum 1.0460;
if 7' = .43, 1.0218, whence 7' = 4210, and r appears to be
3729". '

But if we wish to supply any real or imaginary deficiency
of the inverse series, we may easily revert to a modification
of the original solution of Taylor, who first applied to the
problem of atmospherical refraction his very useful theorem
for ¢¢integration by parts,” as the process is sometimes now
called, that is, fZAY = 3% [ZdX—d $%; [2ZAX* +
Taking the fundamental equation for the refraction, dr = Evf

* See Brande’s Quarterly Journal, vol. xii. p. 395.
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and making firt Z = ;, dX = wvlo, and d¥ = dz,

we have for de.r, STaL ..., v, 13 v’,ﬁv’,..., and

Y dz dz .
for s%» -+ o0 4 o5, ¢ vdy, ... or secondly, making

L i+, wehave [E =24 [ in which making
¢X again = vdo, and Z = z, dY being = dv—g, we have
SE 24k fovdo+ S frodovdo + 27 ... Now in
all cases v* = z* —u, and vdv = zdx — udu = zdx + psudz, and

. -dy -z oo - mpsuz ~ 2
since dr = 5% = o=, we have T = 2+ pau = =0,
dr mz omz v® omz
and vdo ~ mpeuz — 27’ whence 7 = v = mpsuz—x{ 3 Cmpsmz—z

1 fd

& mpes—sg + -+ and from one or the other of the series thus

obtained, we may always compute the value of r, taking the

fluents from z =1 to z=0. But at the borizon, it will

be casier to employ the particular fluent '/, dzl =4,

Jhl 3
discovered by Euler, and still more clegantly demonstrated by
Laplace, in the form "'j/'w e dr =4 x: and the applica-
tion of this proposition leads us to the integration of several
fluents, which may be thus enumecrated -

A 'f 4 _ Jw=y3.141592.
L]

1
Jhl 3
1 dz V(S (a41) dy hd ;
B = - Y —_-;\/“—“, by putting
N OJN; [ Jhl_
y y =z,
J‘ ~dz 1 2%+ a41 [ 2dz
¢ 1 m-1 1 ﬂ—IJ
hl-; hl'; hl=-1
ds z ] dz 2 3
N R R B R
z z 2 o
4z 4
I Tl ad T
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W ! adz - 1 2dz s
L [

/hl p hl 2
1 2dz 2 2z
f"hlgl 3M¢£ 3 i1 3\/2
zZ

o V[ (A-2)de 1 xdz 4
. 0T=fo__=(7—2'-2)&/7=
z z

e

nif 1 mil 1
z z 2
1/ Q=20de (-4 2.16
v fo mé L =(T+J—_2.§—J3 3)«/7—719064Jg=
(1-z)*d
. 1; = = 642767 « m.

Now the value of v =4« (2= £#—-2pxs’) becomes here
V(& —1-2p); and since  — 1 = fdz = — 3L, making
fd.r =5, or 22 = (E+ 1)}, we have 2*~1=5425; but
the actual extent of the atmosphere iz so limited, that we
may neglect B in comparison with 2=, without sensible

- —pdz
error, and make 2 — 1 = 2=‘-, and dr = v (@BR=2px)
-p dz px\-4 _-p dz 3p 5 p°x®
R I R v (B F s )

l dz dz M . 3 .
./2 (Js +3 p:; + 2 P’:g +...). This expression is appli-

cable to every hypothesis by which the relation of = to z can
be expressed ; and in the case of a uniform tempera.ture, since

dy = —mzdz =dz, and dz = m,wehaveE—— — = hl-

mz

anddr:—p\/—< ll"'EP 31 s""P’ g1+

z

i?s m'p® ;:id; +...). Tben, by the mtegration already
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explained, ¥, dr = — pa/% (1 + .414214 mp +
269649 m'p® + .200865 mp* + ...) or, taking = 3403,

and m = 798, r =.010423 (1 + .097133 + .014830 +
.00259 + [.0005]) = .010423 x 1.1151 = 39’ 57 ; so
that the former result was too great by 18”: and if we make

5 = 3540, and m = 766, we find » = .0097988 (1 + .08963 +

.01263 + .00203 + [.00040])=.0097988 (1.1047) =.010825 =
37’ 13", or 16" less than the former computation made it ; the
difference, which before came out 2’ 46”, being now found, a
little more accurately, 2’ 44’

The relation between z and z may be computed from the
hypothesis of an equable variation of temperature in ascend-
ing, according to the statement expressed by the equation
z=y (1 4tz — t) (supra, p. 36. D), or z =yw, whence

dz d dz d wd
by =5 -5 TeetT b
dz dw
dy = — mzdz, and ~ = — — mwdz; consequently

[

hlz = hlw — mfwdz, and z = we-weds = (1 4tz —1t)
e~ m (s + §trr — tx); and from this expression we may find the
density z corresponding to any height z, upon the supposition
that the bulk of a given quantity of air varies proportionally
with a uniform variation of temperature, and not uniformly, as
the experiments of Schmidt and Gay Lussac induced them to
infer with respect to ordinary temperatures. (See Nat. Philos.,
Vol. IL, p. 393.) If we computed the horizontal refraction from
this equation by means of the series beginning with d—: , We
should have to substitute, for dz, (1 + tz — t) e—®(s+jtrr=t2)
(— mdz — mtrdr) and for B, r — 1.

Besides the equation y = az* + 02* + c¢* + ..., there may
probably be many others, not far from the true constitution of
the atmosphere, which would afford finite expressions for the

. . H ~dy 3 /2dz
. - 1 3 - e - —
refraction; thus if y = 2¥, we have dz = = -

and 2= r- 1=;- (1 = Jz), whence dr = ;,u—.’u_k.q,x) =
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-pdz

\/(%-;‘Jz—l+z)’ or, if ~/z=¢,‘\/(%_l-%¢+w),
zdr

and the fluxion assumes the form T (@t bs Foay which 1s
easily integrated, and there is little doubt that such a hypo-
thesis, if advanced with sufficient pomp and ceremony, would
be allowed to represent the constitution of the lower parts of
the atmosphere, which are principally concerned in the refrac-
tion, much better than that of Bessel, though, perhaps, not
quite so accurately as they might be represented by a more
appropriate, though less convenient exponent.

London, 6th Aug., 1828,

This last hypothesis in a more extended form, making y =:21 A= % 2%, was farther

developed in a Memoir in the Philosophical Transactions for 1824, entitled ¢ A
Finite and Exact Expression for the Refraction of an At here nearly T bling
that of the Earth,’ which is reprinted below, No, XXXI — Note by the Editor.
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No. XXXI.

A FINITE AND EXACT EXPRESSION FOR THE
REFRACTION OF AN ATMOSPHERE
NEARLY RESEMBLING THAT OF THE EARTH.e
From the Philosophical Transactions for 1824.

ReAD FEBRUARY 5, 1824,

It has lately been demonstrated, in the Journal of the Royal
Institution, that if the pressure of the atmosphere y be repre-
sented either by the square or by the cube of the square root
of the density z, the astronomical refraction » may be obtained
in a finite equation. Mr. Ivory, in a very ingenious and ela-
borate paper lately presented to the Royal Society, has com-
puted the refraction, by means of several refined transform-
ations, and with the assistance of converging series, from an
equation which expresses the pressure in terms of the density
and of its squares : I have now to observe, that if we substitute,
for the simple density, the cube of its square root, and make

y =3 A =} 22, we shall represent the constitution of the
most important part of the atmosphere with equal accuracy,
although this expression supposes the total height somewhat
smaller than the truth, and belongs to one of those hypotheses,
which Mr. Ivory has considered as inadmissible: it has the
advantage, however, of affording a direct equation for the
refraction, which agrees very nearly with Mr. Ivory’s table,

® Mr. Ivory, in the * Philoscphical Magazine® for 1R25 (vol. lxv. p. 34), states
that the sclution which furine the subject of this Memoir is an immediate conse-
qrerce of b ceneral formula in the * Philosophical Transactions * for 1823, and that
Le d 11t dedduce at, tecause he convived that the coustitution of the atmosphere
who b tt e hypethesis i the text reprosented, did not appreach « near to nature as
thers which he conadermd .- Note by the Eiitor.

VoL, I ¥
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and still more accurately with the French table and with
that which has been published for some years in the Nautical
Almanac.

Since d z = -%I, m being the number of times that the mo-
dulus of the atmospherical elasticity is contained in the radius
of t.he earth, and here dy = -;4/ zdz—zdz, we have dzr=—%

'M/
earth’s surfaee, whlch, when z=0, beoomes §x27300 =955350
feet. For the refraction, we have the equation d r =
—pdz . _ -pdz . .
J(r‘—a’—2p[l-z]) i ~/(2fd:+v‘—2p+2pz » which is the
value originally assigned to this fluxion by Dr. Brook
Taylor; v being the sine of the apparent altitude; and

here dr = _pdz . or, if ¥/ z =, and
(——— v z+.__ +o' 2p+2pz)
_ dr _ vdy
dz—2‘1’d‘l"-2p ~/ 1_2P+v’_3¢+[_2+2p]¢!)
m »n »
ATm-TﬁOfthe Article
Fluents in the Encyclopadia Britannica, No. 259 ;1 the fluent
being [ ¥ (a+bates?)—yosh 1(Zes+ b+ 24 cd

[a +bz+ cx'])] and its whole value, from z=1toz =0, being

hl 2c+b+2v4/c
2,Jc b+2/c/(@+vv)’
;—21;, since @ + b + ¢ = v%,

which is equivalent to the fluxion

— 5=V (a+v) —v+ putting.

a

For the numerical values of the coefficients, taking, at the
temperature of 50°, p =.0002835, and  =.0012904=__1_

772 e %=
2p +v*=.008491 4", b ——m—= —.011646, and c—_+
003155 hence 22 . 17972, ¥/ a’ = . 0921466. Ve

05617 W 10367, 2c+b —. 005336, and r=.17972

* Supra, No. XXX., p. 40. + See also Hirsch’s ¢ Integraltafeln,’ Ixiv.
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.005336—,11234 v .
(.’( 008491 +¢°) —0—.10367 b1 50— 5y Toosioizom ) ¥

and at the borizon, whenv =0, r = .17972(.0921466 —.10367 h1
s ey opaiv ) = 009840 =33’ 42,55 which is only
17,5 lese than the quantity assigned by the French tables and
in the Nautical Almanac, while Mr. Ivory makes it 34’ 07”,5.
Again, if we take r = .1, for the altitude 5° 44’ 21", we obtain
&' 49”5 for the refraction, while the Nautical Almanac gives
ue 7 53", and Mr. Ivory’s table 8 49”,6. There is, however,
no reason for proceeding to compute a new table by this formula,
the method employed for the table in the Nautical Almanac
being rather more compendious in all common cases: and even
if it were desired to represent Mr. Ivory’s table by the approxi-
mation there employed, we might obtain the same results, with
an error never much exceeding a single second, from the

. v 2.26+ } vv rrfv
equation . 00028333 -.-r+ =t 4+ 5400 o+

Laedee S\
L] r'/

Weshack Street, 3rd February, 1824,
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No. XXXII

HISTORICAL SKETCH OF THE VARIOUS SOLUTIONS
OF THE PROBLEM OF

ATMOSPHERICAL REFRACTION.

FrROM THE TIME OF DR. BROOK TAYLOR TO THAT OF THE LATEST
COMPUTATIONS.

From Brande’s Quarterly Journal for 1825, vol. xviii, p. 347,

IN justice to the claims of departed merit, it is often necessary
to revert to the first steps by which the inventions of modern
mathematicians have been prepared, if not anticipated : but it
seldom happens that the earlier solutions of a problem have
been so completely forgotten as appears to be the case with
the investigations of Dr. Brook Taylor respecting the path of
light in the earth’s atmosphere. Besides having apparently
furnished to Newton an instrument with which he has dazzled
the admiring gaze of some later philosophers, they exhibit also
a remarkable specimen of a mode of analysis which seems to
afford a general if not a universal rule for the integration of any
given fluxion by induction : that is, to find a series of successive
Jluzions of the given fluxional quantity, and to express the
relation of each term of this series to the preceding one in a
general formula, which, being applied to the first term, or to
the fluxion itself, must naturally afford us the fluent required.

Part I. Brook Tavror, NEwToN, SimpsoN, Kramp, and
Larrace.

[The translation (with occasional comments interposed) of
the 27th and last Proposition of Taylor’s ¢ Methodus Incre-
mentorum,’ which is given in the original article, is omitted.*]

* 1t appears from several letters of Newton addressed to Flamsteed, in the course
of the years 1694 and 1695, that the subjcct of Refraction had long occupied his
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Account of Sir Isaac NewTon’s Table.

Dr. Halley, in the ¢ Philosophical Transactions’ for 1721, has
published a Table of Refractions, which he says was “ the first
accurate table ”’ made by the * worthy President of the Society :”
* the curve which a beam of light describes, as it approaches
the earth, being one of the most perplexed and intricate that
can well be proposed, as Dr. Brook Taylor, in the last Propo-
sition of his ¢ Methodus Incrementorum,’ has made it evident.
The aforementioned Table, I here subjoin for the use of the
curious, such as I long since received it from its great author ;
it having never yet, that I koow of, been made public.” The
refraction at the horizon is made 33’ 45”; at 45°, 54” only,
agreeing certainly in the latter case with Hawkesbee’s experi-
ments mentioned by Taylor. From the way in which Taylor’s
investigations are mentioned by Halley, it might naturally be
supposed that Newton's computations were independent of
Taylor’s formule; and hence it was natural enough, that
Professor Kramp should spare himself the labour of consulting
Taylor's book, which has by no mcans been generally known,
though there is no doubt that the table might be computed
from some of Taylor's different serics: and even if the hori-
zontal refraction were wanting, it might be obtained from
the five neighbouring results, by makiug the fourth difference
constant. After this explanation, it will still be interesting to
observe the view which Kramp has taken of the history of the

stiention. He first investigated the curve of Refraction upon the supposition that
the density decreases uniformly; a sapposition which he subsequently recognizes
as un le, inasmuch as it would make the refracting power of the atmosphere
m great at the top as at the bottom. He afterwards appears, however, to have
mvestigated the curve, and therefore the quantity of the refraction npon the same
assumptions respecting its constitution, as are made in the 220d Proposition of the

2nd book of the Principia, which s the temperature uniform throughout its
estent. It was upon this hypothésis that his Tables of Kefraction were deduced,
which were unicated to Flainsteed in 1695, and which Halley published in

1721. o this remarkable correspondence Newton first distinctly pointed out the
intluence of the harometer and thermometer upon the amount of the refraction,
and showed that the chief eflects of vapours were secondary only, as modifying the
tempwrature, and therefore the density of the air, The existence of those letters, which
Mr. Baily tirst published in 1815, was unknown to Dr. Young, and he was mistaken
thervture 1n considening Brook Taylor as the tirst philosopher who had dealt with
thus dicult problem : the * Methodus Incrementorum’ was not published tefore
1716, more than twenty years after the researches of Newton.— Note by the Editor.
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problem ; for though it will scarcely be practicable to claim for
Taylor the whole of the merit which Kramp attributes upon
suspicion to Newton, yet certainly much may be learned frem
Taylor's method of conducting the process. :

Observations on Newton’s Table, by Kramp. Analyse des
Réfractions Astronomiques et Terrestres. 4. Strasb. 1798.

«“I. 59. Let us take, for a last example, the table of refractions
left us by the greatest of all mathematicians, and the ablest of
all observers, that have ever existed ; the man, without whose
discoveries our astronomy would scarcely deserve the name of a
science, since it is to him alone that we are indebted for our
knowledge of the eternal laws of nature, and for the application
of computation to these laws; in a word, by the immortal
NewToN. Some years before his death, he communicated to
his friend Halley the Table of Refractions, which the latter
eagerly published [s’empressa] in the ¢Philosophical Trans-
sactions’ for 1721. We are not informed how this table was
constructed, nor if it is the result of analysis or of observation ;
if the former, it would be interesting to have the mode of com-
putation employed by Newton. He would have done better
undoubtedly if he had explained it: but he was at that time in
his eightieth year : let us respect his old age, and let us accept
the table such as it is, with the gratitude due to its author.
«“60. The Table of Newton gives 33’ 45” at the horizon,
and 54" at 45°: hence the index of refraction is .0002618
[Hawkesbee’s .00026414]. .corresponding to a temperature of
74° of Fahrenheit. And on the other hand, at the temperature
of 74°, the horizontal refraction of Newton is exactly what it
ought to be, supposing the temperature of the atmosphere
uniform throughout. Now if this agreement depended on
direct observation, it would perhaps be a case unparalleled in
the wbole history of the physical sciences, especially as we shall
see hereafter, that all the refractions in the neighbourhood of
the horizon, agree almost as exactly with the conditions of the
analysis, which they are very far from doing in the three tables
of Bouguer. If the table was calculated, we may first ask,”
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says Kramp, * for what reason Newton fixed on the temperature
of 74° rather than any other:” but in fact he fixed on no
temperature : * and secondly, how he arrived at the formula,
which alone is capable of making the refraction exactly 33’ 45”
at this temperature ; and this difficulty is not easily removed :
for in fact, that formula depends on a very refined investigation,
which was unknown to Euler in 1754, and of which the prin-
ciples were not well explained before the publication of the
Essay of Laplace, ‘On the Approximation of Formule con-
taining Factors raised to High Powers,’ in the Memoirs of the
Academy of Paris for 1782. Are we to suppose that the
great Newton obtained the same conclusions at the beginning
of the century, by modes of reasoning which he has left unex-
plained? This is not, indeed, abeolytely impossible for a
mathematician to whom nothing was impossible in the higher
analysis ; but.it would be singular that he should have left no
trace of the discovery in any other of his immortal writings.”
So elegant and so important a demonstration could certainly not
have been left unrecorded by Newton, if it had occurred to
him: but he does not appear to have entered, in the latest
period of his life, into any very deep speculations relating to
pure mathematics ; nor to have been employed on any physical
problem which was likely to lead him to the investigation,
having in all probability found it sufficient for the present
purpose to follow the steps of Taylor's ingenious researches.

Theory of SiupsoN and Table of Bradley.

The greatest practical improvement on Newton’s Table was
made before the year 1743 by Thomas Simpson, who computed
the effects of the -atmosphere on a ray of light, upon the sup-
position of a uniform decrease of the air's refractive force in
a~cending, and obtained from observations communicated to
him by Dr. Bevis, a table which gives 33’ 0” for the horizontal
refraction, and 53" for the altitude 45°. lle computes his
refractions by taking #, of the difference of two arcs of which
the sines are as 1 to 9986 : and he observes, that the distribution
of beat in the atmosphere is the reason why the computation
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upon the supposition of an equable temperature is so erroneous ;
though he exaggerated the error of this hypothesis so much, as
to make the horizontal refraction 52':. being probably unac-
quainted with the computations of Taylor and Newton, which
had been published twenty or thirty years before.

"The Table of Bradley, which has been so universally admired
and employed by the English astronomers and navigators, was
obtained from that of Simpson, by the very slight modification
of adopting } instead of +* for the multiplier of the difference
of the arcs, the correction having of course been obtained from
observation only ; but with the fondness for approximative compu-
tation which has often been remarked in practical astronomers,
Dr. Bradley chose to begin by supposing the approximate
refraction known, and to correct it so as to make it exactly
proportional to the tangent of the zenith distance diminished by
three times the refraction. Leaving the horizontal refraction
33’ 0", as assigned in Simpson's Table, he makes it 57" at 45°,
instead of 53". Dr. Bradley has, however, the merit of having
first introduced an accurate mode of allowing for the effect of
the actual temperature of the atmosphere at the place of obser-
vation, which he estimates at s of the whole refraction for
each degree of Fahrenheit above or below the standard tem-
perature of 50°.

Account of EULER’S Investigations, from Kramp, Chap. v.

The Memoir of Euler, contained in the Transactions of the
Academy of Berlin for 1759, though of no importance whatever
to optics or to astronomy, may however become still more
useful, if properly considered, in a moral point of view, than if
it had been completely successful. It may not only teach us a
proper diffidence in our own computations, but it may serve to
show, among many other instances, how liable the greatest and
wisest of mankind are to imperfections and errors, even in those
departments which they have cultivated at other times with the
greatest success. An extract from the account given by Kramp
of Euler’s results, will render it sufficiently obvious, how much
valuable time and useless labour might have been spared if
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Euler had only happened to look at a few pages of Taylor’s
little work, which was printed nearly fifiy years before.
The formula adeopted by Euler for expressing the elasticity

E at the height z is E = f{-‘z ,» f being the subtangent or

modulus, which differs very little from the logarithmic pro-
gression of densities when the temperature is supposed constant,
that is, £ = e— r:9. From this expression he deduces the
fluxion of the angle described by the ray ; but in attempting to
assign its fluent, the art of this profound mathematician has _
completely failed him ; and he has thought it justifiable to have
recourse to the very arbitrary and incorrect supposition that
the curve may be considered as nearly agreeing with a hyper-
bola. having for its equation ¢ = Cym—1. The refraction is
indeed easily computed upon this hypothesis ; but it becomes,
as Kramp has shown, at the horizon, 42’, instead of 36’ 26" as
it ought to be in the supposed state of the atmosphere, and at
45°, no less than 2§ instead of about 57”. In short, the failure
could not possibly have been more total, if the essay had been
the work of the idlest schoolboy, instead of one of the four or
five greatest mathematicians that have ever existed ; for in the
same rank with Archimedes and Newton, and Euler and
Laplace, it is difficult to say what fifth philosopher has any
right to be classed : perhaps Leibnitz, and possibly Lagrange ;
but this question will long remain undecided, if it requires to
be determined by a jury of their peers.

Methods of MaYER and LamBeErT. Kramp, v. 41, 47.

The formula of Mayer was published without demonstration in
his Lunar Tables, and appears to have been only an empirical
modification of those of Euler and Bradley, approaching so
nearly to Bradley’s results as scarcely to require any distinct
consideration.®

Lambert published in 1759, at the Ilague, a scparate essay,

® The opinion of Bessel respecting Mayer’s merits differs greatly from that of Dr,
Youny : after referring to the nearly contemporary labours of Bradley on this subject,
be abds crterem in Aoe capite non rquales soluin cerum etiam postervnes astrononws

unteessd Tdre Mayer, in refractimis formula roctius adhibens thermometri cor-
vt *Fund a Astr im,’ p. 52.—Note by the Editor,
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entitled Les propriétés remarquables de la route de la Lumiére
par les airs ; and he resumed the subject in the Berlin Almanac
for 1779. He has adopted in this research a supposition
respecting the asymptote of the curve which Mr. Kramp has
shown to be inadmissible; and his method of computation
exhibits an error at the horizon amounting to 87”. But ¢ Lam-
bert might have concluded,” says Kramp, *from his own
geometrical investigations, the approximate result which Mayer
had already obtained in part, that is, that for the same abso-
lute elasticity ” as expressed by the height of the barometer,
¢ the horizontal refraction must be reciprocally proportional to
the square root of the cube of the specific elasticity,” depending
on the temperature; and he contradicted himself when he
objected to what Mayer had said on this subject.

Epoch of KraMp and LAPLACE.

For the mathematical theory of refraction it may be said that
nothing of immediate importance was done from the time of
Newton and Taylor, to that of Laplace and Kramp. It is true,
that the X VIth volume of the New Commentaries of Petersburg,
for the year 1771, contains an Essay of Euler, in which the par-
ticular value of a fluent is first demonstrated, which is of singular
importance in abridging the computation of the horizontal re-
fraction ; but it does not seem to have occurred to this great
mathematician in what manner his discovery might be rendered
serviceable for the solution of a physical problem. It was in
the Memoirs of the Academy for 1782, that Laplace made
public an essay on the integration of differential functions, which
contain very high powers of their factors ; and this essay Kramp
considers as first developing the principle that led to the more
accurate solution of the problem.

Professor Kramp had made himself known and respected in
the mathematical world, by his attempts to apply the principles
of mechanical hydraulics to the circulation of the blood in
health and in disease, and he was the author of some interesting
essays on the combinatorial analysis of Hindenburg, which ex-
cited at one period so much attention in Germany, though none
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of its other results appear to have been so satisfactory as those
which are contained in the chapter on Numerical Faculties of
the Analyse des Réfractions. The rapid and brilliant progress
that is displayed in this chapter through some of the most thorny
paths of analysis will for ever distinguish its author among the
original contributors to the advancement of methematical ana-
lysis ; but it is, perhaps, somewhat too rapid to have avoided all
traces of contact with the thorns that were to be encountered.
The originality consists principally in the very great generalisa-
tion of the laws of the faculties of numbers, which have been
since more commonly called factorials, and in their extension
to faculties with fractional indices, formed according to the
analogy of fractional powers, but which, in fact, though they
may be shown to have real values, are little less imaginary in
their immediate structure, than the square roots of negative
numbers, and resemble still more nearly the fluxions of frac-
tional orders. Having first deduced from the series which ex-
presses the relation of the sides of any two polygons, the
general value of the product of two faculties (§ 16): he trans-
forms the faculty 1m:2-1, divided by m, into another which he
shows to agree in its general term with the series expressing
the fluent o/ tm—1 et"d¢, as it is obtained from the series of
Taylor, or of Bernoulli, for integration by parts. He derives
also, from a similar method of investigation, some very compen-
dious expressions for computing the same fluent for any other
values of¢, and gives, at the end of his volume, some tables of their
results, which have lately been much cxtended by Bessel in his
Fundamenta. For the horizontal refraction, which is expressed
by v (dnom) (1 + An + Bu* 4+ ...) he finds 4 = 414214,
B - 262649, C = 200865, D = .160253, and £ = .132935
(sc¢ No. XXX.); and from the values assigned by Laplace
in his expoxition, he computes the refraction equal to 7307
decimal seconds at the freezing temperature, differing but little
from the 7300 assigned to it by Laplace. Concluding from
obeervation, that a uniform temperature of the atmosphere will
not properly represent the actual refractions, he suggests the
alteration of the quantity denoting the subtangent, or modulus
of clasticity, in such a anner as to correspond with the actual
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state of the phenomena ; and this is precisely what has since
been attempted by Professor Bessel. He also observes, that
the refractions near the horizon by no means follow the exact
proportion of the densities, and gives a table extending from 10°
to 100° of Fahrenheit, which shows that, within these limits, the
refraction varies in the ratio of 27 to 37, while the densities are
supposed to vary only in the proportion of 21 to 25 or 52 to 62.

In the precise determination of the refractions very near the
horizon, Professor Kramp has not been particularly fortunate.
The terrestrial refraction, which is the subject of his fifth chapter,
presents no particular difficulty ; and neither of these investiga-
tions, as belonging to the hypothesis of an equable tempera-
ture, presents any remarkahle interest at present. The method
of Laplace, which is well known from the Mécanique Céleste,
has deservedly superseded that of Kramp, especially from the
extreme elegance and conciseness with which the definite fluent
already mentioned is there obtained by means of the method of
partial fluxions ; and the hypothesis respecting the distribution
of temperature, which has been practically adopted by this
illustrious philosopher, has led to the construction of tables
possessed of accuracy abundantly sufficient for every purpose of
astronomy, and which ought never to have been set aside by the
German astronomers, in order to return to the mere speculative
suggestion of Kramp, however elaborately computed and par-
tially supported by their ingenious countryman, Professor
Bessel. At this period of the history of refraction, the inves-
tigation had attained all the practical perfection that could be
desired : it will be proper to proceed in the second place to the
consideration of the later attempts that have been made to
improve it by the mathematicians and astronomers of the
British empire.

Part II.  Account of the later improvements in the theory of
ATMOSPHERICAL REFRACTION.

From the time of the publication of the French tables of re-
fraction, constructed from the computations of the illustrious
Laplace, the determination has acquired a degree of accuracy
rather exceeding than falling short of what might have been
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expected from the fluctuating state of the elements on which it
depends.

Our countryman, Mr. Groombridge, is the first astronomer
that seems to have undertaken an elaborate series of observations
almost entirely for the purpose of obtaining a complete table of
refractions. His first publication is contained in the Philoso-
phical Transaction for 1810. The mode of computation that
he has employed, to.obtain the mean refraction at a given
altitude, is to observe the same star above and below the pole ;
and to make the sum or difference of the apparent altitudes,
which, compared with the double latitude, gives the sum or
difference of the refractions at the given altitudes: then by
comparing these results with those of an approximate table, he
finds the mean factor required for multiplying the numbers of the
table ; and in this manner he has obtained for Bradley’s Table,
first reduced on account of the sun’s parallax, the factor 1.02845,
and has proposed still further to improve it by adopting the form

r = 58.1192 tan (Z..D. — 3.3625r).

Mr. Groombridge has not recorded the particular tempera-
tures of his observations, but has reduced them to the mean
temperature of the table, which is supposed to be 49° for the
interior thermometer, and 45° for the exterior. 'The results
may, however, be of use in continuing upwards the Empirical
Table, inserted in a former number of this Journal (Vol. XV.)
from Mr. Groombridge’s later observations, and it will be
perfectly justifiable to divide the sum of the two refractions in
the ratio of the corresponding refractions of any approximate
table, in order to determine the larger of the two with little
chancg of error. In this manner we may obtain the following
Table, selecting the observations, at convenient altitudes, which
have been most frequently repeated.

Sars. Obs. Alt. Refr. N. A Difr.
o ' " ’ " ‘ " "

a Pers, 12 10 42 41.0 4 50h.2 4 08.7 4+ 3.5
9 Caat. 7 15 38 37.0 3 23.9 325,00 4+ 1.6
2 Lyne, 7 20 34 14.6 2 31.4 2 34.0 4+ 2.6
o Ceph. 5 28 33 11.9 1 45.9 147.1 4+ 1.2
5 Urs. Min, K} 38 2 32.3 1 14.7 1 14.3 = 0.4
Camelop. H. 30 9 45 0 46.5 0 57.5 01 4 0.8
Polans 41 49 45 31.5 0 48.7 0 49.2 4 0.5
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Mr. Groombridge has also taken some pains to ascertain from
observation, the magnitude of the thermometrical correction,
though without distinguishing the different effects at different
altitudes: and he finds for the exterior thermometer .0021 for
every degree of variation reckoned from 45°, and .0023 or
0024 for the degrees of the interior thermometer reckoned
from 49°. His own formula is thus compared with the French
Tables, and with Piazzi's empirical correction. Barometer
29.6.

Alt. Gr. 1810, Fr. T. Piazsi. Gr. 1814,
o4 ¢ ¢ o . n )
00 31 27.9 33 46.3 32 3.0 34 28.1
10 23 46.8 24 21.2 23 46.1 24 32.9
20 18 19.2 18 22.2 18 2.7 18 19.8
20 14 31.7 14 28.1 14 25.1 14 19.8
40 11 52.2 11 48.3 11 42.6 11 45.3
50 9 57.3 9 54.3 9 45.4 9 53.0
100 5 19.8 5 19.8 5 16.1 519.2
200 2 38.4 2 38.8 2 37.8 2 38.3
45 0 0 58.0 0 58.2 0 57.2 0 58.0

‘We find in the Transzactions for 1814 a continuation of Mr.
Groombridge’s researches extended to the refraction of stars
near the horizon. He observed, that the results, corrected
according to the indications of the thermometer without, are
the most correct; he alters the thermometrical factor from
.0021 to .002, and adopts finally the expresion r = 58." 123976
x tan (Z.D — 3.6342957), reducing it, below 87°, .00462 for
each minute.

Dr. Brinkley, in 1810, had acquiesced in the formula of
Simpson and Bradley, with a slight modification, and with the
French correction for temperature, that is » = 56".9 tan (Z.D—

B 500
3.2 505 * mogF- (Ph. Tr.p. 204)

Dr. Brinkley has pursued the subject with his accustomed
accuracy in the Irish Transactions for 1815, and has employed
65 ohservations of Capella and 42 of Lyra, together with a
multitude of others, confirming the accuracy of the French
Tables. He has shown the agreement of several assumed
hypotheses, in moderate zenith distances. Thus, at 50° F. and
29.6 B.: —
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Alt, Obe. Fr. T.
o 4 N ‘1 0

16 3 18.6° 3 18.2
20 2 37.3 2 37.0
30 1.39.7 139.4
40 1 8.7 1 8.6
45 0 57.7 0 57.6

He therefore recommends the employment of the French
Tables for moderate zenith distances, and remarks that nearer
the horizon it is useless to expect minute accuracy in any con-
clusion from astronomical observations.

In the XIIth volume of the Irish Transactions, we find a
memoir of Dr. Brinkley, read in 1814, on the thermo-
metrical correction of refraction; giving a method of correction
“derived from the formula” of Simpson, “obtained in the
bypothesis of a density decreasing uniformly.” The author
observes that ‘“at present we have not sufficient obscrvations to
determine, whether the actual variations of refractions at low
altitudes are most conformable to the theory of Mr. Bessel, to
that of Dr. Young,” or to his own : which, indeed, differ less
from each other than they do from the corrections employed by
the French, by Groombridge, or by Bradley; and after all, it
seems impossible to expect much advantage from any theory
in applying this correction to the accidental variations of
any one climate, though it may very probably be of use for
finding the mean refractions in distant latitudes. (See Vol.
XV. of this Journal.)

It was in the interval between the publication of Dr. Brink-
ley’s two papers, that Dr. Young annexed a new Table of
Refractions to the ¢ Nautical Almanac,” founded on an approx-
imation of his own, but agreeing almost exactly in the mean
refractions with the French Tables, adopting, however, a
correction for temperature derived from theory, and greater
ncar the horizon than that which the French have employed.
Having observed that the series obtained for expressing the
refraction in terms of the density failed at the horizon, because
the altitude was a divisor of the cocfficients, it occurred to him
that this inconvenience might be avoided, by expressing the den-
sity in aseries of the powers of the refraction ; and the formula

® Nee a notice of 1t in ‘ Brande's Quarterly Journal * for 1821, Vol, X1, p. 64,
Nite by the Editor.
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thus obtained, though not always convenient in extreme cases,
is still very useful for obtaining a tolerably accurate result with
great facility from any imaginable theory, and is also capable
of representing, by a few of its first terms only, with their coef-
ficients empirically modified, the refraction either actually
observed, or correctly computed, upon any possible hypothesis
respecting the constitution of the atmosphere.

’aDr. Young’s theorem is p = ';’r + (;Z; -1 2% +d .—:;
i SR When r vanishes, or near the zenith, the first

term of the series only determines it, and it becomes simply pro-
portional to the refractive density p; at a greater distance the
second term become sensible, depending on the total variation
of the actual density in ascending a given height, ¢ being = :—-‘;:
this coefficient ought, therefore, to be the same in every
hypothesis concerning the constitution of the atmosphere, which
professes to represent correctly the initial diminution of tempe-
rature of density in ascending; how this diminution may vary
at greater heights cannot easily be determined from direct
observation, since we cannot reason with certainty on the
temperature of the open atmosphere remote from the earth,
from that of the surfaces of mountains, which may very possibly
be affected by their immediate contact with the solid earth, and
it seems necessary to obtain the subsequent coefficients from
the phenomena of refraction, as observed in favourable circum-
stances, taking also the mean of a great number of results.

In the approximatory method of using four terms only, it
may become convenient to modify even the first two, in order
to co-operate the more perfectly with the succeeding ones ; but
it is difficult to suppose that the actual constitution of the
atmosphere can be represented with great precision by a
hypothesis like that of Laplace, in which the initial variation of -
temperature is made greater than the truth. That there is no
actual necessity for such a departure from observation, is shown
by Mr. Ivory’s table, and by Dr. Young’s latest solution of the
problem, both of which begin with assuming the initial yariation

_ of temperature equal to that which is actually observed : while
Mr. Ivory supposes the rate of variation to become slower
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in ascending, and Dr. Young more rapid, and yet the results
agree very nearly with each other, and with the French tables,
except quite close to the horizon.

The ridiculous accusations which were brought against Dr.
Young, and against the British Government, by an unfortunate
enthusiast,* whose imprudence seems almost to have impaired
his reason, might perhaps serve in some slight degree, if they
served for anything, to make it probable that the method which
he so clamorously professed to bave improved, was in itself of
some value : but as even this does not yet appear to be univer-
sally admitted, it may not be superfluous to give one or two
additional instances of its application.

The general equation, as investigated in the fifteenth volume

of this Journal,t is ps=vr+ (2: 2) (s,.;,. s»-;-.') v
v

.
+(;E + 5 .,+,, = (&5 - )+ ) M

I being = d—z,( = E’ and J" = :r_t_'; andwe may take for
£.001294, and for p, 0002835, so that o = 4.5644, and
= 16100.

1
upt
A. The first hypothesis of Kramp has been abandoned by

Bessel on account of its intricacy, and it has lately been
declared even by Mr. Ivory “ too complicated for calculation.”

We have here z = e=i(¢“~1)+uw, o being = m (z — 1),

—dy . dy ~qv dr_
andd:vzmdz=—;-, andsmced~'=w.a—r ;z but

dz-zd(l-lew+w)-z.da(1- Yoy —ze2 (11 o=
—-udy (1 - -w), and { = -—e,,, or initially = Tll, which

must be = -:, and s = 3, and in general { = 5¢'+-|’ whence

- 25e0"ds a7 , — 25ie% Yy
d(5c—1)* dsz N
==y (,‘,+ e &r,— 5o —ydr — zT,) whence initially

* Hoene de Wronski. + Supra, No. XXIX, p. 80.
VOL. 11, F
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, =250 " _ 25 T l"t"

(=_§’p: dg 64ps —8+}u 6dr+'.)
—-25 (¢ T L -25 (¢
m(m—‘m-”fﬁﬂ ™ ;»:)=e47(3s-’+
vt [ ¥ S —25/ ¢ 5ot

= Tom ~ Getp) = i (g = € + igps)- By sub-

stituting thcse values, we obtain the equation ps = or +
(2.85275 1 )r‘+2306 - 5_76 (5.7.055 — s+ 5450 %') ”y

s

With this formula, we may proceed to calculate the refraction
for the case v = .1, that s, for an altitude of 5° 44’ 21", which
will be allowed to be as low as can possibly be required for any
accurate observations. Assuming then r = .0026, we have r*=
.000 006 76, r* =.000 000 017 576, and r* =.000 000 000 0457;
also s = .99500, & = .9900, and s* = .9850, aud the equation
becomes p = .00026130 + .00001610+.00000411+.00000157
+ [.000 001 50] = .000 28458. so that .0026 is too much by
about 35, and r= .00259, which may be called certain to the
last figure, giving 8’ 54" .2, a result probably very near the
truth in the actual mean state of the atmosphere.

B. Mr. Ivory’s tables are constructed upon the hypothesis
.8dz  ~v

= .75z 4 .252%; hence (— S =154 5z, _E_T =§_P._,
and J" = 2—,;: %: : the equatnon then becomes p = — T+

(2.85275 — ; ss) + 2012 v 5 ', + 503 (4.7055 4 7055 v’)',,
and assummg agam- = 0026130, & = 000006 8276

.000 000 01784, and ‘—, = .000 000 000 0467, we have p =

.00026130 + .000016 10 +.00000359 + .000 00 177 +
(000 002 40] = . 00028516, too much by about . 00000164, and
we must subtract r45, and we have r = . 002586 = 8’ 53" 4,
with an uncertainty that cannot exceed a few seconds : Mr. Ivory’s
table, which may possibly be correct, but which would natur-
ally be a little within the truth rather than beyond it, since it is
computed by a dircct converging series,has 8’ 48”.0, which is 5.4

less. It cannot be supposed that Mr. Ivory’s method requires
any such confirmation, but it would be easy to add a few more
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terms to this series as a test, if there were any necessity for the
perfect accuracy of the determination by two opposite methods.

C. The approximation lately communicated to the Royal
Society,® which supposes y = 1.5z1.5 — 523, gives { = g—z =

. do 2.5 1 ,do -1.125dz
225/ 2=z, whence g = Sn —s= Somn — o Ay = e
dv  1.125 . e . .
= -P’t'z.;z’ the fluxion of this initially :—.;,—2: dv - l—‘i%:—:izdz,

d%  1.125 do  1.6875 ot
and & = mp*s® d—r'+ mpst .}Tc
(285275 — J#) T 4+ 3019 v + 755 (4.7055 + 5291 %) 5,
and, for r =.0026, p=.0026130+4-.000 016 10 +.000 005 39 4
.000 002 034[.000 002 00.] = .000 286 82, requiring for r a
reduction of r}y, whence r = 0025740 = 8’ 50”.9, with an
uncertainty not exceeding 2” at the utmost. And the direct
computation by logarithms gives 8’ 49" .6, differing only 1”.3
from the series in this almost extreme case : the series being in
this hypothesis a little more rapidly convergent than in some
others, so that it would be unnecessary to compute more terms
if it were to be employed for any practical purpose. It may be
remarked that the omission of ©* in the fourth term is not quite
s0 unimportant to the result as it appeared at first sight, though
it is compensated, in the approximation that has been adopted,
by the alteration of the other coefficients.

Mr. Ivory, observing with some truth that Dr. Young's
inverse series was not in all cases so convergent as could be
desired, or even as the author appeared to believe it, has still
more lately applied the powerful machinery of his analytical
investigations to the comstruction of some tables upon a hypo-
thesis which seems in most respects to represent the consti-
tution of the atmosphere with sufficient accuracy, and which
agrees also extremely well with the most approved observations.
Mr. Ivory adopts the opinion of Schmidt, and of some later
experimental philosophers, that a diminution of temperature
diminishes the actual bulk of a given portion of air by an equal
quantity of ~pace for each degree of the thermometer, and
infers that, at the temperature of about — 500° of Fahrenheit,

® Supra, No, XXXL

: consequently p = :3 r+

F 2
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the air would cease to occupy any space whatever as such, or
in the form of a gas. He seems, however, to have imagined in
some of his earlier papers, that the diminution of temperature
might still be equable in ascending to all possible heights ; and
even in his essay, printed in the Transactions for 1823, he
says, “there is no ground in experience for attributing to the
gradation of heat in the atmosphere any other law than that of
an equable decrease as the altitude increases . . .: it therefore
seems to be the assumption most likely to guide us aright in
approximating to the true constitution of the atmosphere.”
From this hypothesis he derives the very convenient conclusion
that the pressure must vary as a certain power of the density,

or that y = 2°, n being nearly 7 : but finding it impossible to
suppose the atmosphere so little elevated as this hypothesis
would require, he modifies it by the addition of another term to
the value of y, though without very clearly relinquishing in
words the original supposition, and ultimately adopts an expres-
sion equivalent to that which has already been mentioned in
this paper, or y=.752+.252"

Mr. Ivory first expands the well known expression for the
refraction into a series by means of the binomial theorem, and
finds the value of .the particular fluents of the several terms
from considerations nearly resembling those which Laplace has
employed in the Celestial Mechanics, so that the fluent of e—ud¢

becomes a particular case of his solution. Then taking y = 2,
he computes the horizontal refraction 34’ 1°.3 instead of
33’ 51".5, which is the result commonly adopted ; and he finds
that at all altitudes the formula differs a few seconds only
from the French tables. But this equation supposes the whole
height of the atmosphere to be no more than about 25 miles, since

dy=3de, and do = ¥ = 22 4dz, and flo= Zobyl,
and ;l. is a little more than 5 miles. Mr. Ivory therefore
inquires, what would be the effect of an atmosphere in which
y =f2+( —f) 2"+, f being = ‘:.;_4;, so that when 5 =0,
andn = o, f = %, and y = %z’+gz, the height being thus
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made to vary from 25 miles to infinity. But in all these
cases he obeerves, that the rate at which the heat decreases,
becomes slower at greater heights than at smaller.

“ When n is less than 4, f becomes negative ; but these cascs
are excluded, since they belong to atmospheres still less elevated
than when n=4. They are excluded too for another reason:
for although the rate of the decrease of heat at the earth’s
surface agrees with nature, yet it increases in ascending, which
is contrary to experience.” Among these excluded atmospheres
is that which supposes y = ;z‘ - ; Z*:* and no doubt the first
objection against its pncumatical accuracy is valid ; and Mr.
Ivory’s expression is more accurate at extreme heights; but
there is no ground whatever from experience to deny that the
rate of decrement of temperature initially increases : the obser-
vations of Humboldt, Leslie, and othiers, on mountains, have
sufficiently shown that the rate increases for the earth’s surface,
and it will be therefore difficult to show that it must be other-
wise for the atmosphere ; it is indeed possible that, though the
atmosphere is certainly of the same mcan temperature as the
earth at the base of the mountain, and probably at its summit,
it may be a little colder at the middle of its height ; but this
diversity is by no means shown by any actual observations that
bave been recorded ; and even if Mr. Ivory’s hypothesis for the
densities be allowed to be most probable, it will not follow that
the temperature must not decrease more rapidly at moderate
beights than he supposes, in order that the contraction of bulk
may keep pace with his formula.

For the atmosphere of infinite height, in which f = ¢

Mr. Ivory finds the horizontal refraction 34’ 18”.5, or 17".2
more than for an atmosphere 25 miles in height, and 27" more
than the quantity generally admitted by astronomers. It seems,
therefore, to follow that for an optical hypothesis, an atmosphere
less than 25 miles high might have the advantage ; even if it
did not afford the greater facility of direct computation which
bas since been pointed out.

Having examined the comparative effect of different hypo-

® Supr, No. XXXI.
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theses respecting the height of the atmosphere on the refraction,
Mr. Ivory procecds to sccommodate his formulas to the more
ready vomputation of the mean refraction, and of the barome-
trical and thermometrical corrections in the case of the constitu-
tion, which appears on the whole to come the nearest to the truth.
It seems, however, questionable, whether the value of the ex-

ponent of the density —: is not a little too great, since it is
derived from observations on mountains at small heights ;* for it
is probable that the very summits of the highest mountains that
we can ascend ought to be chosen for determining the rate of
variation of temperature, if it is to be supposed uniform, and
that if we take the exponent -g—; = g only, there will be a
deficiency which requires to be compensated, by assuming the
rate of variation to become more rapid in ascending; and this
seems to be the case in the atmosphere of 18 miles, which
agrees so nearly with the results of Laplace’s hypothesis, in
which = 1.396.t

There is a mathematical paradox in the latter part-of Mr.
Ivory’s paper, which requires some further explanation.

“The density in the hypothesis of Kramp being too com-
plicated for calculation, he deduces from it,” says Mr. Ivory,
¢ this more simple value,” z=¢—(1 — 1) ¢ *“ by retaining only the
part of the expansion of the function in the index that contains
the first power of ¢.”

In all this Kramp is followed by Bessel, whose aim it is to
determine the value of ¢ that will best represent all the obser-
vations of Dr. Bradley, without paying any regard to the
terrestrial phenomena, or to any further theoretical consider-

ations whatever.

* Mr. Ivory, in his reply to this historical sketch (Phil. May. for 1825, vol. lxv.
p. 34), says that this statement is incorrect, *In the average,”’ says he, I have
adopted, all the greatest heights are taken into account, not excepting Gay Lussac’s
ascent, The result obtained is then compared to the same ascent, which is the

test height hitherto attained by man; and the difference is shown to be incon-
siderable,” It has been elsewhere most justly observed by Dr. Young that inas-
much as the elevation which Gay Lussac attained was estimated by ‘the fall of
the barometer and thermometer, it would be reasoning in a vicious circle to
make it the foundation of any lusions respecting the relations which connect the
height, the density, and the temperature of the air.—Notc by the Editor.

+ Noticed in Brande’s Journal, Vol. XV, p. 362, in some remarks on M. Plapa’s
Researches on Refraction.— Note by the Editor.
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“ Now, there is an essential distinction between the rigorous
expression of the density, and the approximate value used
instead of it. The latter belongs to a finite atmosphere, and
the former to one of unlimited extent ;... and the total beight
will be determined by the equation” e=(1-0)¢ — ¢ = 0.

“ At the surface of the earth, we ought to have ¢ = % ;

which would limit the atmosphere to about double the height in

the hypothesis of Cassini. Bessel determines ¢ = 5. nearly;

which is quite inconsistent with the value of” { “at the surface
of the earth, and with the elevation necessary for depressing the
thermometer one degree, as found by experiment. Accordingly,
although the refractions in this table represent Dr. Bradley’s
observations with great exactness, as far as 86° from the zenith,
yet, at lower altitudes, they diverge greatly from the truth.”

Now it seems obvious, that since z = ¢ — (1 = 9) ¢, when
e-(1—0)e¢—g=0,2~¢=0,and z = ¢ instead of z = 0.
However this may be, Professor Bessel certainly states the
result very differently from Mr. Ivory, for he says (Fund.
Astr., p. 57).

“Finem huic capiti imponat stricta densitatis aeris com-
paratio, qualis prodit e formula” I, (the correct hypothesis),
and II (the approximation).

@, The height. s, The density (I). & (11).

625 toises ,8668 .8671
10000 0921 .1021
20000 .0086 .0104
40000 .0000 .0001,

Now if the atmosphere terminated when z—:s =0 and z =Y,
the beights placed opposite to the last numbers of the table
must be merely imaginary. The mistake appears to be in the
correction of the fluent for y the pressure, which seems without
pecessity to be suppoeed initially = 1.*

® Mr. Ivory, in his reply, has sstisfactorily explained this paradox: when the
demstty is c'(l")’, the corresponding expressions for the pressare and heat are

= (1=1)s . 1 sc (1=0)¢

< - — and — — — respectively : the propertics there-
| | Y] 1= 11—

¢éure of the new atmosphere arc cssentially different from the one originally assumed,
— Nt hy the Edutor.
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Mr. Ivory concludes with approving from theory the employ-
ment of the interior thermometer instead of the exterior, a
method which Dr. Brinkley thinks himself justified in adopting
from observation, but which appears, to some of the best judges
in Europe, to be one of the causes that have introduced a variety
of mistaken opinions among the most refined discoveries of mo-
dern astronomy. The evidence of our senses, when continually
repeated, is strong enough to convince us of things the most
repugnant to our judgment; but it is not so easy to imagine
how, from mere theoretical grounds, it can be believed, that a
refraction which has taken place at a horizontal surface in the
atmosphere above the observatory oan be at all annibilated or
compensated by a subsequent refraction at a vertical or greatly
inclined surface, which separates the air of different temperatures
within and without the observatory : for the laws of equilibrium
would never allow the separation to remain in a horizontal
direction, or near it, even in the most tempestuous weather.

Mr. Ivory’s Table of Refractions would certainly deserve to
be annexed to this abstract, if it had not already been examined
in this Journal,* and if the correction for temperature, which
is so carefully applied, were more supported by observations,
compared svlely for that purpose. With respect indeed to this
correction, it is highly advisable, that every observatory should
have it determined from its own observations only: the mean
refractions of the French Tables are sufficiently established ;
though, as Mr. Ivory has discovered, they were actually com-
puted for the freezing temperature, and not very perfectly
reduced to the mean temperature to which they are assigned ;
but they are much better than the labour of many years could
procure from the observations of a single astronomer only. It
may, however, still be advisable to retain the theoretical cor-
rection for temperature in the ¢ Nautical Almanac,’ because
a work of that kind, which is likely to be consulted in a variety
of climates, is required to represent the probable results of the
mean constitution of an atmosphere in equilibrium at different

* See * Brande’s Journal,’ vol. xii.: An Apology for the Postscript on Refraction,
in answer to Mr. Ivory’s remarks. Mr. Ivory asserted that Dr. Young’s formula and
the table of refructions founded upon it were empirical merely.— Note by the Editor.
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temperatures depending on climate, and not the temporary
effeets of the seasons only, or of the weather at the moment, or
of the alternations of day and night.

The grounds of Dr. Young's latest methad of computing
the refraction will be obvious, from comparing this paper
with the demonstrations contained in former numbers of this
Journal, in which the equationsy = 2* and y = 24 are both
shown to afford finite expressions for the refraction; and it
appears that their combination, in the form y = gz] - % 2,
belongs to an atmosphere which might be expected, from
Mr. Ivory’s investigation, to represent the refraction with
extreme accuracy, though it is probably more dense than the
true atmosphere at great heights, and yet terminates too
abruptly. But the unexpected advantage of combining a
perfect representation of the true decrement of heat at the
earth’s surface, with a very accurate expression of the refrac-
tion, in an equation of a finite form, and not laborious in its
application, must at least give this hypothesis some claim to
the attention of those who feel any remaining objection to
the approximation that has been employed in the ¢ Nautical
Almanac’

Professor Schumacher is desirous of having it explicitly un-
derstood, that the omission of the passage relating to the pre-
ference of the exterior thermometer, in his edition of the
Eoglish explanation of Dr. Young’s Table, was completely
accidental ; it is retained in the German trapslation, and
Professor Schumacher fully coincides in the opinion that it
expresses.*

® This refers to the fullowing letter addressed by Dr. Young to Professor Schu-
macher, which is given in * Brande’s Quarterly Journal,’ vol. xvii. p. 103 :—

*1 was much surprised the other day to observe that in copying the explanation
of my Table of Refractions from the Nautical Almanac, you had omitted, without
assigning any reason, the words ¢ which would be more consistent with the theory,’
an espression which 1 had employed in speaking of the use of the external thermo-
meter, in preference to the interior. I am the more disposed to remonstrate with
vou on this occasion, because I observe that a great ber of astr s, and
amung them some who do not usually act without reflection, have inconsiderately
taken 1t for granted that the correction ought to be made lcmrding to the height of
the intenior thermometer, as nearest to the place of observation,

* Now with 1egard to the theory, it is perfectly vbvious, that the computation
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extends only to such chnn;u of density as take place between the different strata of
the atmosphere idered as horizontal ; and that its results must necessarily ter-
minate where this regular constitution of the atmosphere ends: that is, outside the
observatory or other building containing the instruments: while the change of
density between the external and internal air, taking place in general at surfaces
more nearly vertical than horizontal, at least when the object is but little elevated,
and certainly never at horizontal surfaces, will either have no effect at all in in-
creasing the refraction, or as great an effect at higher as at lower altitudes: so that
this little irregular addition or diminution can never require to be considered as a
proportional to the whole original mean refraction,

¢ With to practice und observation, I need only refer to M. Delambre’s
remarks in the ¢Connaissance des Tems’ for 1819, where he shows that for Mr.,
Groombridge’s observations the mean error of the exterior thermometer is only five-
sixths as great as that of the interior,”” —Note by the Editor.
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No. XXXIIL
COMPUTATION OF THE

EFFECT OF TERRESTRIAL REFRACTION,

IN THE ACTUAL CONDITION OF THE ATMOSPHERE.

From Brande’s Quarterly Journal for 1821, vol. xi. p, 174.

A. It is well known that a projectile, thrown in an oblique
direction, will acquire a height equal to the versed sine of twice
the angle of elevation, in the circle, of which the diameter is
the height due to the velocity : and that its horizontal range
will be four times the corresponding sine. Hence it is obvious,
that when the direction is nearly horizontal, the radius of
curvature of the path of the projectile will be equal to twice
the diameter of that circle, or to twice the height due to the
velocity, since the chord is twice as great, and the versed
sine the same as in the circle, so that the radius must be

quadruple.

B. It is also well known, that the tangent of a parabola inter-
sects its diameter at a distance above the vertex, equal to the
length of the absciss below it ; so that the portion of the absciss
below the vertex is half of the part cut off by the tangeut.

C. The horizontal ordinate of the parabola, flowing uniformly
with the time, is always proportional to the vertical velocity,
and the difference of any two proximate ordinates, compared
with their length, and the evanescent interval between them,
will always give the distance of the intersection of the tangent,
‘according to the common method of finding the tangents of
curves ; that is, as the difference of the velocities is to the
whole velocity, so is the difference of the absciss to the part
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cut off by the tangent, or to twice the abeciss reckoned from
the vertex.

. D. Now the velocity of light, considered as a projectile, must

be supposed to vary directly as the refractive density; so that
we have only to determine what proportion the variation of the
refractive density of the atmosphere, in the height of a foot or
a yard, bears to the whole refractive density, and to increase
the foot or the yard in the same proportion, and we shall obtain
the measure of twice the height due to the velocity, or of the
radius of the circle of curvature of the ray of light moving
horizontally through such an atmosphere.

E. The velocity of light in a vacuum, and in the atmosphere
at 509, with the barometer at 30, varies in the ratio of 3540 to
3541 ; the height of a homogeneous atmosphere, under these
circumstances, is 27,000 feet; and the temperature descends
about 1° for every 300 feet that we ascend. Consequently the
velocity varies yav-vrdsv in every foot, as far as the diminution
of pressure is concerned, and y¥zs-¥dv-73c* i8 to be deducted
for every foot, on account of the diminution of temperature, or
as much more or less as this diminution is more or less rapid ;

so that if the change were 1° in — 27000 = 95 feet, the refraction

would be annihilated, and, if stxll more sudden, there would
be a depression or looming, instead of an elevation. But in
ordinary circumstances, supposing Professor Leslie’s estimate of
1° in 300 to be correct, we have i (il = rodhws) =
mudws for the variation in a foot, and consequently,
116873000 feet for the radius of curvature of the ray ; which
is to the earth’s radius, or 20900000 feet, as 5.6 to 1 ; conse-
quently, the elevation of a distant object must be 1}y of the
angle subtended at the earth’s centre, since the angle contained
between an arc and its chord is always equal to half the angular
extent of the arc.

F. The general temperature of the atmosphere will affect this
refraction in so slight a degree, that it may safely be neglected ;

* This assumes that air expands or contracts ghath part for every degree of heat :
the experiments of Gay Lussac made this expansion W3th part.— Note by the Editor.
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but it would be always of importance to ascertain, if possible,
the comparative temperature at different heights ; and whenever
it is practicable to find the height A, corresponding to a depres-
sion of 1°, supposing it to be different from 300, we may em-
ploy as a divisor, instead of 11.2, the reciprocal of .1,
(vbes — ,,\,.) divided by 10450000; or the reciprocal* of

10450000 10450000 A—54.7 _ .1093(h—54.7) _
50 27000 “u 3540 ° 27000k h -

1093 — —, which, when % =300, becomes .1093-.0199 =
.0894 = T 88 before.
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No. XXXIV.

° REMARKS ON LAPLACE’S LATEST COMPUTATION OF

THE DENSITY OF THE EARTH.

From Brande’s Quarterly Journal* for 1820, vol. ix. p. 32.

It cannot but be highly flattering to any native of this country,
to have his suggestions on an astronomical subject admitted
and adopted by the Marquis de Laplace: but in applying the
theory of compressibility to the internal structure of the earth,
it appears that this illustrious mathematician has deviated
somewhat too widely from the physical conditions of the pro-
blem ; partly in order to obtain a convenient and elegant for-
mula for expressing the results, and partly, perhaps, because he
was not acquainted with all the experiments, by which these
conditions are determined.

* In the preceding volume of this Journal there is given an abstract, translated
from the ¢Connaissance des Tems,” of a Memoir of Laplace on the Figure of the
Earth. After referring to investigations and experiments by which it is proved that
the Earth is not homogeneous in the interior, and that the density of the strata
increases from the surface to the centre, he proceeds as follows :— .

¢“But the earth, though heterogeneous in'a mathematical sense, may still be
chemically homogeneous, if the increase of density of its strata is caused only by the
additional pressure they suffer as they approach towards the centre, It is easy to
conceive that the immense weight of the superior strata may considerably increase
their density, though they may not be fluid; for it is known that solid bodies are
compressed by their own weight. The law of the densities which result from these
compressions being unknown, we cannot tell how far the density of the terrestrial
strata may be thus increased. The pressure and the heat which we can produce are
very small, compared to those which exist at the surface, and in the interior of the
sun and stars, It is even impossible for us to have an idea of the effect of these
forces, united in those immense bodies. Every thing tends to make us believe that
they have existed at one time in a high degree on the earth, and that the phenomena
which they have occasioned, modified by their successive diminution, form the present
state of the surface of our globe; a state which is nothing more than the element of
a curve, of which time is the abscissa, and of which the ordinates will rep: t the
changes that this surface has suffered without ceasing. We are far from knowing the
natare of this curve, and we cannot therefore ascend with certainty to the origin of
what we observe on the earth ; and if| to satisfy the imagination, always troubled by




No. XXXIV. ON THE DENSITY OF THE EARTH. 79

Instead of proceeding with the calculation upon the analogy
of the well known law of the compression of aériform fluids,
which exhibit an elasticity simply proportional to their density,
M. Laplace has at once assumed that the elasticity of a solid

ignorance of the cause of the phenomena which interest us, a few conjectures are
ventared, it is wise not to offer them ex with extreme caution,

¢ The density of a gas is proporti to its compression, when the temperature
remains the same. This law, which is found true within those limits of denrity,
where we have been able to prove it, evidently cannot apply to liquids and solids, of
which the density is very t, compared to that of gas, when the pressure is very
small, or even nothing. It is nataral to suppose that these bodies resist compression
the more they are compressed ; so that the ratio of the differential of the pressure to
that of the density, instead of being constant, as with gases, increases with the densi:g.
The most simple function which can represent the ratio, is the first power of the
density, multiplied by a constant quantity. It is this which I have adopted, because
it unites to the advantage of representing in the simplest manner what we know of
the compression of liquids and solids, a facility of calculation in researches on the
figure of the earth. Until now, mathematicians have not included in this research
the effect resulting from the compression of the strata. Dr. Young has called their
atteation to this obj by the ing!nious remark, that we may thus explain the
increase of density of the strata o terrestrial spheroid. I iave supposed that
some interest may be excited by the following analysis, from which it appears that it
is possible to all the known phenomena depending on the law of the density
of these strata. These phenomena are the varintion of the degrees of the meridian,
and of gravity, the precession of the equinoxes, the nutation of the terrestrial axis, the
inequalities which the flattening of the earth produces in the motion of the moon, and
lastly, the ratio of the mean density of the earth to that of water, which Cavendish
bas fised by an admirable experiment at five and a half. In proceeding from the law
already anmounced of the eol:rreuiou of liquids and solids, I find that, if the earth
be supposed to be formed of a substance chemically homogeneous, of which the
density is 2} that of common water, and which compressed by a vertical column of
its own substamce, equal to the millionth part of half the polar axis, will augment in
density 5.5343 mllionths of its first density, it will account for all the phenomena.
The existence of such a body is very admissible, and there are apparently such on the
surface of the earth.

“If the earth were entirely formed of water, and if it be supposed, in conformity
with the experiments of Canton, that the density of water, at the temperature of ten
degrees (507 Fahr.) and compressed by a column of water 10 metres (32.81925 ft.)
in beight, increases by 44 millionths, the flattening of the earth would be rip; the
coefBcient of the square of the sine of the latitude in the expression of the length of
the seconds ulum wonld be 59 ten-thousanths, and the mean density of the
earth would be nine times that of water. These reults differ from observations by
more than the errors to which they are liable.

“1 have sopposed the temperature uniform throughout the whole extent of the
terrestrial spheroid ; but it s very possible that the heat is greater towards the
oratre, and that would be the case if the earth, originally highly heated, were
coatisually cooling. The ignorance in which we are with respect to the internal
csastitutiun of this planet, preveats us from calculating the law by which the heat
decreases, and the resulting diminution in the mean temperature of climates; but we
cam prove that this diminution is insensible for the last 2000 years.

* Suppese a space of & constant temperature, containing a sphere having a rotatory
motion ;: and suppose that after a long time the temperature of the space diminishes
one degree ; the sphere will finally take this new temperature; its mass will not be
at all altered, but its di ioms will diminish by a quantity which I will suppose to
be a bandred thousandth, & diminution which is nesrly that of glass. In consequence
of the pnindiple of areas, the sum of the areas, which each molecule of the sphere will
descnbte round 1t azis of rotation, will be the samne in a given time, as before. It is
~ary to conclude from this, that the angular velocity of rotation will be augmented
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body is proportional to the square of the density. Now there
seems to be no very good reason why we should suppose the
elasticity to increase more rapidly, with the density, in the case
of solids or liquids than in that of elastic fluids; and it would
be very difficult to demonstrate that it does not even increase
less rapidly. As far, however, as any conjecture can be formed
from the loose analogy of the elasticity of steam, compared
with that of water and ice, the elasticity of a solid might, per-
haps, be expected to vary in the sesquiplicate ratio of the
density, but certainly not in the duplicate.

by a fifty thousandth. So that, supposing the time of a rotation to be one day, or a
hundred thousand decimal seconds, it will be diminished two seconds by the diminu-
tion of a degree in the temperature of the space. If we extend this consequence to
the earth, and also consider that the duration of the day has not varied, since the
time of Hipparchus, by the hundredth of a second, as I have shown by the comparison
of observations with the theory of the secular equation of the moon, we shall
conclude, that since that time, the variation of the internal heat of the earth is
insensible. It is true that the dilatation, the specific heat, the degree of permeability
by heat, and the density of the various strata of the earth being unknown, may cause
a sensible difference between the results relative to the earth, and those of the

we have supposed ; according to which the diminution of the hundredth of a second,
in the length of the day, would correspond to a diminution of two hundredths of a
degree of temperature. But this difference could never extend from two hundredths
of a degree, to the tenth; the loss of terrestrial heat corresponding to the diminution
of a hundredth of a second in the length of the day. We may observe even that the
diminution of the hundredth of a degree, near the surface, supposes & much greater
one in the internal strata; for it is known that ultimately the temperature of all the
strata diminishes in the same geometric progression, so that the diminution of a
degree near the surface corresponds to a much greater diminution in the. strata
nearer to the centre. The dimensions of the earth, therefore, and its inertial
momentum, would diminish more than in the case of the sphere we have supposed.
Hence it follows, that if, in the course of time, changes are observed in the mean
height of the thermometer placed at the bottom of the observatory caves, it must be
attributed not to a variation in the mean temperature of the earth, but to change in
the climate of Paris, of which the temperature may vary, with many accidental
causes. It is remarkable that the discovery of the true cause of the secular equation
of the moon, should at the same time make known to us the invariability of the
length of the day, and of the mean temperature of the earth, since the time of the
most ancient observations.

¢ This last phenomenon induces us to suppose that the earth has arrived at that per-
manent temperature which accords with its position in space, and its relation to the
sun, It is found by analysis, that whatever the specific heat, the permeability by
heat, and the density of the strata of the terrestrial roid, the increase of the
heat, at a depth very small, compared to the radius of that spheroid, is equal o the
product of that de 3:, by the elevation of the temperature of the surface of the earth,
above the state of which I have just spoken, and by a factor independent of the
dimensions of the earth, and which depends only on the qualities of its first stratum
relative to heat. From what we know of these qualities, we find that if this elevation
was many degrees, the increase of heat would be very sensible at depths to which we
have penetrated, and where nevertheless it has not been observed.”

The memoir of Dr. Young referred to in these observations is *On the Mean
Density of the Earth,’ which forms part of the paper (No. XXVIII. of this Work) in
the Philosophical Transactions for 1819, ¢ On the Probabilities of Error in Physical
Obeervations,’ &c.—Note by the Editor.
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However this may be, M. Laplace’s hypothesis is not cor-
rectly applicable to the internal structure of the earth ; since
it either makes the mean density too small in comparison with
that of the surface, or the compressibility at the surface too
great; and if this hypothesis actually represented the law of
nature, it would follow that the earth is not “ chemically homo-
geneous,” but that the specific gravity of the internal parts is
naturally greater than that of the external. In this respect the
simple analogy of elastic fluids will afford us a result more
conformable to observation.

M. Laplace supposes the mean density of the earth to be 54,
according to Mr. Cavendish’s experiments, and the superficial
density 2} only. Now there is absolutely no rock, either pri-
mitive or secondary, of which the specific gravity is less than
about 24, and the mean of a great number of rocks gives at
least 2} : so that, allowing for a moderate admixture of me-
tallic substances, we can only consider it as certain that the
specific gravity must be between 24 and 3 ; and taking 2§ for
Shehallien, the mean density of the earth, according to Mas-
kelyne’s observations, and Hutton’s computations, ought to be
4.95. The determination of Cavendish, however, is susceptible
of greater accuracy ; his result is 5.48, and it will be safest to
adopt 5.4, as the most probable mean of the two series of ex-
periments.

The superficial compressibility, assumed by M. Laplace, is
much greater than can be admitted, according to the experi-
ments of Chladni on sound, and to those which have been made
in this country, as belonging to any solid mineral substance
whatever. A column of the height of one millionth of the
carth’s axis is supposed to produce an increase of density
amounting to 5.5315 millionths. Now the modulus of elasticity
of glass, and of other compact mineral substances, is generally
a column of about ten million feet in height ; nor has any solid
been observed, except ice, in which it stands so low as five
million. But ten million feet is nearly half the length of the
earth’s axis ; so that one millionth of the axis would be two
millionths of this modulus ; and the pressurc of such a column
would cunsequently produce a variation of two millionths in the

VoL. If. G
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density of a solid, or at most of 3 or 4 in the most compressible,
and in none so much as 5 or 53. It must therefore be allowed
that this part of the hypothesis is inconsistent with direct
observation.

There is the less occasion for encountering any of these diffi-
culties, as we shall find that the theory of compressibility, in its
original form, is abundantly capable of representing the most
probable results of all the observations, which it is intended to
connect. The truth of this assertion will appear from the in-
spection of ‘ a table, which shows the compressibility and ellip-
ticity corresponding to different suppositions respecting the spe-
cific gravity of the earth’s surface, taking 5.4 as sufficiently
demonstrated, for the mean density.

Mean density 5.4  Elasticity as the density.
. Modulus Modulus
Superficial | . . Central Mivpin
Density. ms:nr:::iifhe n (t;l;_(;_ges:nds Density. Ellipticity.
3.13 .8275 11 024 13.35 "
3.02 .5048 10 550 14.54 T
2.79 .4699 9 820 15.78 J0T
2.60 . 4460 9 321 20.10 +ix

. From this table we may easily deduce the intermediate re-
sults by interpolation : thus if the ellipticity were found exactly
s¥3, we should have for the superficial density 2.73, or 24, and
for the height of the modulus 9 650 000 feet.

In these calculations, it has not been necessary to have re-
course to any foreign authority or assistance whatever. Dr.
Thomson, in his review of the last volume of the Philosophical
Transactions, has taken the trouble to observe, that Laplace had
before pursued a similar investigation, although the slightest
inspection of the dates of the respective papers might have con-
vinced him that Laplace had done no more than justice, in
acknowledging the true source of the theory in question. The
geographical elements of the problem have been supplied by
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the experiments and observations of Maskelyne and Cavendish,
compared with thoee of General Mudge, Colonel Lambton, and
Captain Kater ; the computations have been conducted by the
assistance of Mr. Ivory’s most masterly investigations of the at-
tractions of spheroids, combined with the theory advanced in the
Philosophical Transactions, together with an auxiliary approxi-
mation, for supplying the want of convergence of the series.

It is unnecessary to enter into any inquiry respecting the pre-
cession and nutation, as connected with the earth’s density,
gince these effects are known to depend on the ellipticity of the
spheroid and of its strata alone, without any regard to the
manner in which the density is distributed among them.

London, 2nd Jan., 1820,
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No. XXXYV.

REMARKS ON THE

ASTRONOMICAL MEASUREMENTS OF THE
ANCIENTS.

From Brande’s Quarterly Journal for 1822, vol. xiv. p. 190,

THERE is a passage in Plutarch, as quoted by Eusebius in his
Evangelical Preparation, which determines the distance of the
sun from the earth to be about 95 millions of miles, according to
Sir William Drummond’s computation of the length of the
stadium published a few years since in the Classical Journal.
The circumstance must be allowed to be very remarkable, and
seems at first sight to indicate an astonishing precision of ob-
servation without the possession of any accurate instruments:
but a little consideration is sufficient to convince us, that to an
astronomer unprovided with a telescopic micrometer, it was
utterly impossible to ascertain an angle of any kind even with-
out a probability of error of half a minute, much more to come
within one-tenth of a second of the truth in the measurement
of seven or eight seconds. Indeed the very utmost that
could be expected from the observation of the moon’s disc at
the quadratures, would be to make it probable that there was a
sensible though a very small parallax, but whether of a second
or a minute could certainly not be conjectured without a tele-
scope ; and the perfect coincidence of Plutarch’s report of the
determination of Erastosthenes with the true measure must have
been wholly accidental : a conclusion which is still further
confirmed by the extreme inaccuracy of the statement of the
moon’s distance in the same passage, though the moon’s paral-
lax was pretty well known to Eratosthenes, as well as the
earth’s dimensions.
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There is on this subject a singular confusion in the remark
of Laplace, that Eratosthenes found the difference of latitude
of Syene and Alexandria equal to 35 of the circumference : and
this distance being estimated at 5000 stadia, Eratosthenes in-
ferred that the whole circumference was 250,000. ¢ But,” he
continues, “ the uncertainty of the value of the stadium, em-
ployed by this astronomer, renders it impoesible to appreciate
the accuracy of this measurement.”— Ezp. du Syst. du Monde,
vol. ii.

Now it is highly improbable that Eratosthenes should have
committed any gross error in the measurement of the length of
Egypt from north to south, and we may surely consider it as
a sufficient determination of the stadium which he employed,
that it was 5444 of the difference of latitude between Alexan-
dria and Syene, or between 31° 13’ and 24° 5', which is 7° &,
or about 498 English miles ; and 50 times this distance is
24,900, giving 7930 miles for the earth’s diameter: a result
very fairly obtained from the operations of Eratosthenes, and
as correct in reality as the distance of the sun in Plutarch has
been rendered by accident only. Nor will the variation be
material if we take the number 252,000 from Pliny, instead of
250,000 stadia, as the exact extent assigned by Eratosthenes to
the earth’s circumference.

In referring to some of these numbers, we may observe one
thing with respect to the numeration of the Romans, which has
not been commonly noticed : that is, that though they had not
invented a decimal arithmetic, they occasionally employed a
centenary notation : thus in Pliny's fifth book, chapter ix., we
bave xxvixxxix mill. passuum, for 2639 miles, and again
xv.xLv, for 1545; the word centena being omitted, as was
also usual in their computations of money; but they do not
seem to have made any further step, either upwards or down-
wards, in the decimal scale.

Dr. Young, in the next number of Brande's Journal, inserted the following note
with reference to the observations in the text :—

* Nince the publication of the Remarks on the Exposition du Systtme du Monde,
10 the last number of this Journal, the illustrious author of that work has favoured
the writer of thos remarks with a copy of his late republication of the fifth bovk of
the Eipraition, under the title ot * Precis de I'Histoire de I'Astrouomie.” 8. Paris,
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1821.” The passage in question being no longer liable to the objections which were
made to it in this Journal, it becomes necessary to insert it here in its improved form.

“The celebrity. of his successor Eratosthenes is principally due to his measure-
ment of the earth, which indeed is the first attempt of the kind that has been
recorded in the history of astronomy. It is very probable that in much ecarlier times
astronomers had not wholly omitted to make experiments of the same kind; but
nothing has been left of these earlier operations, except some estimations of the
circumference of the earth, which have been reduced by means of comparisons more
ingenious than demonstrative, to something like an agreement with more modern
determinations. Eratosthenes having considered that at Syene, the sun, at the time
of the summer solstice, shone into a well throughout its depth, and, comparing this
observation with that of the meridian altitude of the sun at the same solstice,
as observed at Alexandria, found the celestial arc, comprehended betweern the zeniths
of these two cities, equal to the fiftieth part of the whole circumference; and as
their distance was estimated at about five thousand stadia, he gave 252,000 stadia as
the whole length of the terrestrial meridian, 1t is, however, very improbable, that, for
so important a purpose, this great astronomer should have been contented with the
coarse observation of a well enlightened by the sun. This consideration, and the
relation of Cl des, authorise us to lude that he observed the shadow of the
gnomon at the summer and winter solstices, both at Syene and at Alexandria: and in
this manner he obtained the difference of latitude of these two cities very nearly such
as it has been found by modern observations. But the test uncertainty, that
this measnrement has left us, relates to the length of the stadium employed by
Eratosthenes, which it is difficult to determine among the multitude of different
stadia that were employed by the Greeks’—Brande's Quarterly Jowrnal, vol, xiv.
pp- 410, 411, .-
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No. XXXVL

ESTIMATE OF THE EFFECT OF THE TERMS INVOLVING THE SQUARE OF
THE DISTURBING FORCE ON THE DETERMINATION OF THE

FIGURE OF THE EARTH.

IN A LETTER TO G. B. AIRY, E8Q.

From Brande's Quarterly Journal for 1826, vol. xxi. p. 346.

My DEAR Srn,

I vENTURED to express to you the other day my opinion,
that the terns depending on the square of the force might
safely be neglected in our investigations relating to the figure
of the earth; and I shall now state more particularly the rea-
soning on which my estimate is founded, taking as an example
the case which we mentiened, of a fluid supposed to be without
weight, and surrounding a spherical nucleus.  In this case I
apprehend that the consideration of the square of the force will
make no difference whatever in the excess of the cquatorial
diameter above the axis, but that the semidiameter bisecting the
angle formed by those lincs will be shortened by one half of the
square of the ellipticity ; that is, for a body of the magnitude of
the carth, by about thirty feet.

Calling a minute centrifugal force at the equator £, the force
of gravitation there being unity, the immediate centrifugal force
elsewhere will be expressed by f cos. ¢, ¢ being the latitude,
or, more correctly, the reduced latitude, which has also been
called the geocentric latitude, and might be named with more
minute propriety centrocentric ; and the same force, reduced to
a horizontal direction, will be f'sin. 9 cos. .  Again, the excess
of the equatorial semidiameter above the semiaxis 1 being ¢, th
elevation above the inscribed sphere will be everywhere ¢ cos.'p
consequently the inclination to the spherical surface or its

d cos.fp 9 hicl
3 = — 2eviu. ¢ cos. 9, which expresses

tangent, will be «
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the force of gravitation reduced to the direction of the sur-
face, and which must be equal to f sin. ¢ cos. ¢, so that we
have 2¢ = —f, when both are evanescent. When they are still
small, but not evanescent, we must compute the amount of
two perturbations ; the firet arising from the inclination of the
surface, which makes the sine of the angle in the proportion of
which the force f is to be reduced, not that of the geocentric, but
that of the true latitude ; that is, not sin. ¢, but sin. ¢ + cos. ¢
2e sin. @ cos. ¢ ; and in order to counteract this perturbation and
to preserve the equilibrium, we must have an additional inclina-
tion equivalent to — f cos. 3 2¢ sin. @, or to f* cos. % sin. @.
In the second place, the supposed inclination will require to be
modified on account of the variation of the force of gravity de-
pending on the distance from the centre, a variation amount-
ing everywhere to 2¢ sin. *p, which is the measure of twice the
depression below the circumscribed sphere, so that the tangent,
instead of £ sin. @ cos. ¢, must become fsin. ¢ cos. ¢ (1 —fsin.?p),
the alteration being = f* sin. ¢ cos. ¢. The sum of the fluents
of these two corrections, which are respectively if* cos.* ¢, and
1f* sin. ‘p, shows the elevations, which at the equator and at
the poles, are simply $f*; and being equal, do not affect the
magnitude of the ellipticity. But coe. % + sin. ‘¢ =1 + % cos.
4¢, the fluxion of which is also expressed by—sin. 4¢d@, and the
second fluxion by — 4 cos. 49 d¢?, so that a curvature of f* cos. 4¢
is to be everywhere added to that of the elliptic arc, the curva-
ture of the inscribed sphere being unity ; and it is evident that
within one fourth of a right angle of the equator and of the
poles, this minute quantity will increase the curvature, and
diminish it at the intermediate latitudes ; the elevation added
being always j f* 4 L 7% cos. 49, or 4 & 4 }¢® cos, 49 ; the
utmost variation being #¢* or %, and f being . ; so that it
can nowhere exceed gz,

Since, therefore, it is found that in the two extreme cases of
a uniform density, and a uniform difference of density between
the surface and the central parts, the equilibrium is obtained
in a figure not sensibly differing from an elliptic spheroid, it
may safely be concluded that the ellipsis will sufficiently answer
the conditions of equilibrium in intermediate constitutions of
the internal parts of the earth.



No. XXXVIIL ASTRONOMICAL CHRONOLOGY. 89

No. XXX VIL

SIMPLE DETERMINATION OF THE MOST ANCIENT EPOCH OF .

ASTRONOMICAL CHRONOLOGY.

I A LETTER TO FRANCIS BAILY, ESQ., F.R.S.

From Brande’s Quarterly Journal, vol. xxv. p. 195.

My pEAR SIR,

WaEN I addressed to you some remarks on the date of
an astrological manuscript found in Egypt, I was not aware
bow perfectly superfluous the chronological evidence, afforded
by such fragments, is rendered by the accuracy of the original
tables of Ptolemy, which were probably the basis of the compu-
tations that those fragments contain. I have since looked into
these tables, as they are exhibited in the edition of Basil,
which, without any suspicion of having been sophisticated by
translators or commentators, is still very correctly printed ; and
my copy of which I read with the greater pleasure, as a gift of
my friend, Professor Schumacher : you have also had the good-
ness to furnish me with the elaborate Commentaries of the
Abbé Halma, which I did not venture to consult until I had
made a separate computation of the chief points that I wished
to ascertain : although I afterwards obtained from them some
valuable assistance in verifying my results, and in the more
ready comparison of the different parts of the wonderful original
with each other.

The planetary tables of Ptolemy are all carried back to the
epoch of the Alexandrian noon of the first day of the first
Egyptian year of the reign of Nabonassar. The mean daily
motion of Saturn, as laid down in these tables, is 0° 2 0~
33" 31" 28" 51" ; and that of Jupiter 0° 4’ 59" 14"
26" 46" 31"""; (P. 214, 215, 217, 218.) The former of
these motions is less by 5744, the latter by yy},4 only, than
those which are laid down by Bouvard in the latest of our
wodern tables.  They therefore afford very convenient founda-
tions for determining the exact year that was intended ; and
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their evidence is of the more importance, as the other very
slow changes, which might be employed for the same purpose,
indicate, for some unknown reason, a much greater antiquity
than is consistent with collateral evidence ; the changes in the
position of the earth’s axis, for example, both in its direction and
its inclination, being considerably greater than the results of the
best theories would lead us to expect in the time that has elapsed.

We may suppose, in the first instance, that the epoch of
the sun’s mean longitude (P. 8') is correctly laid down as
330° 45, and his true longitude 333° 8’ ; the great equation,
2° 23', being found in the table of Prosthaphaereses (P. 78),
opposite to the mean anomaly 265° 15': then, taking the sun's
mean longitude at the beginning of the corresponding Gre-
gorian year, as about 280°, the difference in the sun’s longitude
becomes about 50° 45’; and it will be most convenient to
reduce the places of the planet to the beginning of such a year,
in order to compare them with the ‘modern tables, which are
arranged according to Julian years; the difference of these
years not being material for the present purpose. We thus
obtain the epochs of the tables, which are 296° 43’ and
184° 41’ (P. 213, 216), 295° for Saturn, and 180° 23’ for
Jupiter ; that is, in the decimal notation of Bouvard, about
3286R and 2006R respectively.

We now find that Saturn had returned nearly to the same
‘mean longitude at the beginning of 1814 : for which we have
327.07°%: and if we look back for all the years at the begin-
ning of which the longitude is the same within a very few
degrees, we shall observe recurrences more or less exact at
periods of 2, of 7, and of 12 revolutions, corresponding to 59,
206, and 353 years; and we may easily make a table of all
those which particularly require attention.

Year. ¥ GR. Year. b GR. Year. b GR.
1814 327 —-657 335 — 863 335
1461 —-658 3221l - 864 322}

1108 -687 327 - 893 327
755 -716 333 - 922 333
402 -746 325.6 -~ 952 326
49 =775 331 - 981 331

—304 -805 323 -1011 323

—834 329 -1364
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Among these dates, those which afford the nearest coinci-
dences are —893, —834, —687, and —746: and it is suffi-
ciently well known that this last is the true date, as we may at
once infer from the place of Jupiter, which is 198.5°® at the
begioning of this year, and in —805, the nearest alternative,
208“R; in —687, 18Y°R only.

If we wish to verify the calculation, from Ptolemy’s own
tables of Saturn, we have, for the 2560 equinoctial years
between —746 and 1814, 2560x365.24222 days, making
2561 Egyptian years, and 255.1 days. Then (P. 213)

For 2268" = 324 x 7 2° 29" 0"

288 280 18 55
5 (P. 214) 61 7 0
2404 (P. 215) 8 2 14
15.1 .0 30 50
352 7 29

This is too little by 74°, or 4 of a revolution, out of 87
entire ones, and the agreement would be more perfect if we
supposed the time a year longer: but the motion being already
slower than that of the modern tables, it is clear that such a
suppoeition is inadmissible. In a similar manner we find, for
Jupiter, the longitude in 1827, 2028, after 2574 Egyptian
years and 258} days

Hence, (P. 216, 218) 2430"=810x3 285° 26’ 42"

144 48 54 55
2401 19 56 58
18} 1 31 1

355 49 36

The error here appears- to be only 4° in 257 revolutions,
which is little more than ysdss; but, in fact, it is a degree or
two greater at each end, though still small enough to make the
year perfectly certain.

It is therefore abundantly demonstrated, from the tables of
Naturn and Jupiter only, that the Alexandrian noon of the first
day of the first year of Nabonassar happened in the equinoctial
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year preceding the vernal equinox —746; and, according to
Ptolemy’s reckoning, the sun’s mean longitude was 330° 45,
whence the date was M. Eq. —746" —29.676%: or, since,
according to Ptolemy’s equation, the true equinox happened
when the mean longitude was 359° 23’ only, if we call the true
equinox @, the date becomes @ — 746" — 29.050°: and this
date is less likely to be affected by the error of the equation
than the former; but they both require correction on account
of the erroneous length of the year employed in carrying back
the epoch: for though Ptolemy’s sidereal year is within 12
seconds of the truth, his tropical year, as well as that of Hip-
parchus, is about five minutes too long: since these great
astronomers agree in making the Julian year too long by ;35
of a day, while the Gregorian is shorter by 735 ; so that in the
600 years preceding the most accurate observations of Hippar-
chus, they made this difference 2 days instead of 4%, and they
supposed the sun to have been 2} days too far advanced on the
day in question, and to have described a space so much shorter
than the truth. This correction would give us the date @ —
746" —31.554. But the mean of Hipparchus’s actual observa-
tions, reduced, with all possible care, according to the correct
value of the tropical year, gives us nearly Q — 7467 — 30.4*
for the epoch of Nabonassar.

With the assistance of Mr. Halma’s table of astronomical
chronology, and of the Memoirs of Professor Ideler, which he
has republished, I have endeavoured to exhibit, in chronological
order, the various observations which are scattered through the
works of Ptolemy, and to connect them with the series of Olym-
piads, and with other chronological epochs. But.1 must defer
this table to a future occasion.*

Believe me, dear Sir,
Yours very sincerely,

T. Y.
Park S8quare, 8 March, 1828,

* It appeared in the next number of Brande’s Journal under the title ‘Astrono-

l]r:(ilcal Chronology, deduced from Ptolemy and his Commentators.’— Note by the
iditor.
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No. XXXVIIL

ON THE RESISTANCE OF THE AIR.

DETERMINED FROM CAPTAIN KATER’S EXPERIMENTS ON THE
PENDULUM.

From Brande's Quarterly Journal for 1823, vol. xv. p. 851,

Tae effect of resistances of various kinds on the vibrations of
the pendulum is become a subject. of increased importance,
from its influence on the determination of a standard measure :
for although the effect of these resistances on the time may be
wholly inconsiderable, it is by no means superfluous to prove,
by demonstrative evidence, that they are actually insensible.

A coostant resistance, and a resistance proportional to
the square of the velocity, produce either no change at all
of the time of vibration, or an infinitely small change when
the arc is infinitely small: but a resistance simply propor-
tional to the velocity, if it be at all considerable, may produce
a sensible retardation, even in an evanescent arc. It becomces,
therefore, of some importance to inquire, what is the law of the
resistance to very slow motions ; and the elaborate experiments
of the indefatigable Captain Kater will afford us the informa-
tion that is required for establishing, in this respect, the
sufficiency of the superstructure that has been built on them.
It is, however, necessary to take the mean of a large number
of separate registers of observations, in order to investigate the
laws of the retardation : for the question is so delicate, that the
results of any small number of experiments might lead to very
erroneous conclusions: but when properly analysed, the expe-
riments, related in the third part of the Philosophical Transac-
tivns for 1819, are amply sufficient to show that a certain por-
tion of the resistance to the motion varies simply as the velo-
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city; and that it cannot be correctly expressed, as Mr. Gilbert
has supposed,* by a constant term and a term proportional to
the square of the velocity only. Sir Isaac Newton. indeed,
has hinted in the Principia, that a constant term expressing
the resistance derived from the thread suspending his pendulum,
with another term proportional to the square of the velocity,
might be sufficiently accurate for the purpose; and Euler has -
inferred, from Newton’s experiments, that the constant resistance
of the air to the motion of a leaden ball, two inches in diameter,
was about one millionth part of its weight, or that it would
cause it to remain at rest at an angular deviation of 0".2 from
the vertical line: but a part at least of this resistance may
perhaps have been derived from the want of flexibility or elas-
ticity of the thread.

From a mean of 60 experiments of Captain Kater, consisting
of about 5000 vibrations each, we obtain 1°.1835, 1°.086, 0°.997,
0°.919, and 0°.843 for the successive values of the arcs, at
intervals of about 960 vibrations: and a slight irregularity in
the second differences of these numbers makes it probable that
.997 ought to be altered to .998. With this correction, the
successive diminutions, in about 1920 vibrations, will be .187,
.167, and .154, for the respective arcs of intermediate values,
each of which must be supposed to exceed the intermediate arc
actually observed by one third of its deficiency below the mean
of the two neighbouring numbers, and we may call them 1.088,
1.000, and .9195 respectively. ’

Putting then D = z 4+ Ay 4 A?, for the diminution of the
arc, we have three equations, the last of which, subtracted from
the first, gives us .1685 (y + 2.1075 z) = .033, and
y + 21075 z = .1958; consequently, if z = 0, y = .196,
which would be the coefficient for a resistance simply propor-
tional to the arc, giving z + .196 for the amount of the second
diminution, that is,.167 ; so that = would require to be negative,
which is impossible: and if y = 0, z = .093, and the second

* Referring to an article in the same volume of tlis Journal, p. 90, ‘On the
Vibrations of Heavy Bodies in Cycloidal and Circular Arches, as compared with their
descents through free space: including an estimate of the Variable Circular Excess

in Vibrations continually decreasing.” By Davies Gilbert. . . . With a Supplement.
—Note by the Editor.
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diminution would require z to be .074: a value which is suffi-
ciently compatible with these equations, but which would not
be applicable to the shorter vibrations; an arc of 0.°80, for
example, exhibiting a diminution of about .11, and leaving only
about .050 for z, so that z must probably be still smaller than
05, and if we make it = .0-40, we shall have 127 left for y + 2
and .196 — .127 = 069 = 1.1075 2z, and z = .062, and
y = 065, and D = .040 + .065 A + .062 A% which gives
132 for an arc of .8, and =z is still too large. Now, if we take
x somewhat smaller, we shall reduce the expression to a per-
fect square, and we shall find that (.16 + .25 A)® = .0256 +
080 A + .0625 A? will represent the diminution with great
accuracy, giving .187, .168, and .152, for the respective arcs of
1.09, 1.00, and .92: and this expression has the advantage of
affording a very easy integration for the arc.

For, if ¢ be the number of vibrations divided by 1920, we

—dA
bave - dA = (1642547 ds, and g, (164 25A)l = d¢: but
1 ~.25dA
d Je+ 254 — (. w+”A),, and thenfore m =t+c or

d64 .25 A -H—;, and .64 4+ A = H_C: whence, putting

64 + A =B and its initial value 4, b =|;§, and ¢ = l—:; con-
t

sequently B= ——, and | B ;} + %
+t

b

In many of the series of experiments, it is necessary to make
some variation in the constant coefficients, on account of the
state of the atmosphere, and we may take in general B= A+C,
and—l-"- = %—+%, the factor g, in the case already compauted,
being made either 16, or 16 X 1920, accordingly as we wish to
take the interval of the coincidences for the unit of time, or to
express it in seconds ; and C, in some of the serics of experi-
ments, appearing to be about 1° or even 2° instead of 0°.64.
The supposition of C = 1° is equivalent to that of I) =.04 4
04 A + .01 A, g becoming in this casc 25.4 instead of 16.

The cunstant part of D, expressed by r, causes, in half a vibra-
tion, a retardation of g = 02000067 = 0.004 = (.24,
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which happens to agree singularly well with the 0.”20 deduced
by Euler from Newton’s experiments.

We may easily compute, from the value of A thus determined,
the total retardation depending on the vibration in a circular
curve, which is expressed, for a small arc of vibration, by one-
eighth of the versed sine, the whole time of the vibration being
unity, or, for the arc A, since the versed sine of 1°is .000152,
by very nearly .000019 A?; and the fluxion of the time being
dt, that of the circular excess will be as A’dt = (B - C)y'dt =

C'dt—2BCdt+B'dt : now l+ tor =14 pt, putting p=

b 1
7 and B=b% ) andfl e =; hl (14 pt), consequently the
fluent of the second term is -2 C i bl (14-pt) = — 2Cq hl 3

that of the third, or — a + p‘), de, bemg, when corrected, —

1+pt b’l+p' =0 i)-:bBt ; 8o that the whole ecircular excess

1_90 b L
will become .000019¢ (C'~2C 2, bl (1+pt) + 12 ) or
.000019¢ (— .41—1.28 L hl 3+5B)=.00001 (1.95B—2.432

7 hl—+ 779.) Taking, for example, Captain Kater’s first

reglster of expernnents in which @=1°.38, and A .92, when ¢

was o sothat belng22§_12949 1+—t 1+ 5.08

5.05 q b
o1 = 17124, and - 6.850, and hl 5

being =.7031 —.4447 = .2584, the whole is .00001(5.987 —4.304
+.779) ¢ =.00002462, or 2.12 in 86050 vibrations; which
agrees exactly with Captain Kater’s computation from the
separate arcs observed.

If we adopted the Newtonian hypothesis of a resistance mea-

sured by m4-nA? we should have —— =df, and ¢t = —

must here make ¢ =

ey

\/ o arc tang. ( \/ ~A), consequently ¥ (mn) t= — arc
tang. (\/'EA), and tang. o/ (ma)Y, = -, /5A and A= — \/ =

—; we ~
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tang. ({ (mn) £)4-c; and for the correction of the fluent, a =
+c,and A=a— \/;tang W (mn)t).

There appeafs to be an oversight in a remark inserted among
the Elementary Illustrations of the Celestial Mechanics, p. 145 ;
where it is observed that ¢ the whole time of the oscillation can
never be sensibly affected by any small resistance proportional
to the velocity ;” for, in fact, the coefficient v, in the expression
of Laplace, being equal to v/ (Iz—"—::) is in some degree
affected by m, which expresses the resistance ; and the time is
affected be v, though Laplace has not investigated the precise
effects of a given resistance. That which is here inferred from
Captain Kater’s experiments, however, would scarcely produce
a retardation of one fifticth of a second in a year ; and may,
therefore, be wholly neglected.

If we are anxious to reconcile the existence of a retardation
proportional to the velocity, with the common theory of the im-
pulse of fluids, it will not be difficult to understand how the
one may possibly be derived from the other. e have only to
suppoze the pendulum subjected to the influence of a very slow
current of air, in order to deduce a resistance nearly proportional
to the velocity v from another, which depends on (¢ ¥ v)*. For
it will appear, by considering the dircctions of the forces con-
cerned, that the extremities of the vibration, while the velo-
city of the current excceds that of the pendulum, and ¢ — v
remains positive, the quantity 2cv will denote a retarding force
throughout the motion, and that the portions ¢* and v* will be
retarding in one direction and accelerating in the other, and
will have no =ensible effect on the extent of the vibrations;
while on the other hand, if the velocity of the pendulum
towards the middle of the vibration exceeds that of the current,
the force 2cv will retard the motion in one direction, and acce-
lerate it in the other, leaving only the constant resistance ¢, and
the variable quantity *, which is proportional to the square of
the velocity.  We obtain, therefore, for the extremities of the
vibrations, a force proportional to the simple velocity, and for
the middle, a constant resistance, and another force varying

VoL Il It
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simply as the velocity, the joint effect of all which must be a
resistance nearly such as has been inferred from Captain Kater’s
experiments, if the current moved at the rate of about half an
inch in a second, which would have been scarcely perceptible to
the senses.

The question, however, regards not so much the distribution
of the resistance through the different parts of a single vibra-
tion, as its comparative value for the mean velocities of the suc-
cessive vibrations. Now, if the velocity of the current always
exceeds that of the pendulum, the only effective resistance will
be proportional to the simple velocity ; and when it is smaller
than the greatest velocity of the pendulum, the resistance will
approach more and more to the ratio of the square of the velo-
cities increased by a constant quantity; and supposing the
velocity of the current to remain small and nearly uniform,
while the arc of vibration considerably diminishes, the whole
resistance will at first be more nearly as the square of the arc,
and if the arc be sufficiently diminished, the resistance propor-
tional to the simple velocity will at last remain alone. Hence,
it is easy to understand the variation of the constant coefficients
in the different series of Captain Kater’s experiments.*

12 April, 1823,

¢ This very difficult and important subject, involving some corrections which
were not appreciated or foreseen at the time the article in the text was written, has
been much more thoroughly investigated in later times by Colonel Sabine, Bessel,
Poisson, and more recently by Professor Stokes in an admirable Memoir in the
¢ Cambridge Transactions for 1850."—Note by the Editor.
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No. XXXIX.

CONSIDERATIONS ON THE REDUCTION OF

THE LENGTH OF THE PENDULUM

TO THE LEVEL OF THE SEA.

From Brande's Quarterly Journal for 1826, vol. xxi. p. 167.

Mg LAPLACE seems to entertain some doubts of the pro-
pricty of considering the density of an elevated portion of the
earth’s surface, in reducing the length of the pendulum,
observed on it, to the level of the sea. The respect due to
the opinions of so illustrious a mathematician, renders it there-
fore necessary to enter into some further explanations ‘on this
subject.

If the earth be considered as a sphere, either of uniform
density, or disposed in concentric strata, except at a small part
near the end of onc of its radii, where we may suppose a
spherule to be situated of a density so much greater as to
exceed that of the neighbouring parts by the mean density,
and touching the surface internally ; the distance of its centre
from that of the earth being a ; then at the angular distance ¢
from the given radius, and at the distance z from the centre of

the spherule, the direct attraction will be '}:, n being = 1 — a,
or the radius of the spherule, and the angular deflection of
the pendulum, or of the surface of the sea, or of that of an

atmosphere, the disturbing force z% being réduced in the ratio

of the sine of the angle subtended by the side a, will be ';';

@ sin. ? sin. . .
. L. “—'T'—' ; and the fluxion of the elevation correspond-

n 2
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ing to d¢, the angle being very small, will be 'yf%i,m—:?. dp.

Now z* = (cos. ¢ — a)* + sin. *p = cos. *¢ + a* — 2a cos. ¢

+ sin. 0 = 1 4+ a* — 2a cos. ¢; and the fluxion of
1 . a sin. ¢do |

e T consequently the fluent of

an® sin. @
AL T

is "—z—’ Making, for example, a = .999, as for a
spherule about 8 miles in diameter, and » = .001, the fluent

.000000001 . .
., ng the distanc
To9s > and taking the distance

z = 1 as giving about the mean level of the sea, the correction
will be (%")3 and the elevation, over the spherule, (.001)* —

(-001) or ncarly one millionth of the radius; that is about 21
feet. Such would therefore be the elevation of the true level
of the sea by the attraction of the supposed spherule; and
whether we reduced the length of a pendulum to this level, or
to the surface of the sphere, the difference would be insensible ;
while the real force of gravity, and consequently the length of
the pendulum, would be increased one thousandth by the
presence of such a spherule, and the curvature of the meridian
at the spot would be deranged in a still greater degree.

If the sphere were now contracted to the radius a, and the
surface were covered with an atmosphere of the height of the
diameter of the spherule, it is obvious that the spherule re-
maining in its place would become a mountain of the mean
density of the earth, and the surface of the atmosphere would
still be in equilibrium at the height of 21 feet only above the
original surface of the sphere: and the spheruie might be
flattened into a table-land, without any sensible alteration of
its action, provided that the place of its centre of gravity re-
mained but little changed. In any case the length of the
pendulum at the surface of the globular mou .tain, or of the
table-land, would be manifestly affected by the attraction of the
prominence, and consequently by its density, while the actual
elevation or depression of the level of the sea would comnpara-
tively be very inconsiderable: this elevation may therefore
safely be neglected in practical cases: while it is impossible to
compare the length of the pendulum in different latitudes, as

at the remotest cxtremity is
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referred to any regular spheroid, in a satisfactory manner,
without first making corrections for the effect of such accidental
irregularities, as far as it is in our power to ascertain them.

It must however be observed, that the correction, taken in this
general sense. cannot be considered as coming under the deno-
mination of a reduction to the local level of the sea. In the
case of the sphere, for example, diminished to 1 2», the length
of the pendulum at the general level of the sea would be 14-4n,
at the summit of the globular mountain 14-n only ; immediately
below it, | +r—4n=1—23n, while if we allowed for the height
only, without considering the attraction of the mountain, it
would be supposed 1+n+4r=1+5n, as much exceeding the
required value, belonging to the general level of the sea, and
independent of the local attraction, as the result of the actual
experiment under the mountain would fall short of it.

9, Park Square, Portland Place,
16 March, 1826,
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No. XL.

COMPUTATIONS FOR

CLEARING THE COMPASS

OF THE REGULAR EFFECT OF A SHIP'S PERMANENT ATTRACTION.

From Brande’s Quarterly Journal for 1820, vol. ix. p. 372,

INVESTIGATION.

1. A suFFICIENT approximation, for the explanation of many
of the phenomena of the dipping needle, is obtained by sup-
posing the magnetism of the earth to be concentrated into two
magnetic poles, very near to each other, and to the earth’s
centre ; this supposition being also equivalent to that of an
infinite number of small magnets, parallel to each other, distri-
buted equally throughout the earth’s surface, or through any
other concentric strata.

2. The angular distance of any point on the earth’s surface,
from the equator belonging to these poles, being called the
magnetic latitude, it has been demonstrated by several mathe-
maticians that the tangent of the dip must be twice the tangent
of the magnetic latitude.

3. Hence it may be inferred, that if the sine of the dip be
called s, that of the magnetic latitude will be WICEET) 4_'_ TR

4. 'The angle subtended at any point by the two poles will
obviously vary as the cosine of the magnetic latitude.

5. Consequently, in the triangle representing the two mag-
netic forces and their result, either of the two greater angles
being ultimately equal to the complement of the dip, it follows
that as the cosine of the dip is to the earth’s radius, so is the
sine of the small angle subtended by the two poles, to the side
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corresponding to the ultimate magnetic force in the direction of
the dipping needle.

6. The magnetic force in the direction of the dipping needle
will therefore vary as the cosine of the maguetic latitude di-

rectly, and inversely as the cosine of the dip, or as :-:—[I;; or since

sin. L sin.L tan.D tan.D sin.L sin. L 2 .
0. L= (07,8807 5o D~ L sioD - ZanD" J(@—8s)
and the magnetic force must vary inversely, as the square root
of 4 diminished by three times the square of the sine of the
dip: so that between the magnetic equator and the magnetic
pule, the force ought to vary in the proportion of 1 to 2, and the
vibrations of a given needle, in a given time, ought to vary in
that of 10 to 14.142.

7. This variation of the force is greater than has yet been
observed : but on board of the fsabella, when the dip increased
from 74° 23’ to about 86°, the time of vibration decreased in
the proportion of 470 to 436, or 1.078 to 1, and consequently
the force increased in that of 1.162 to 1, while the calculation
requires an increase in the ratio of 1.095 to 1 only; so that,
considering the unavoidable uncertainties of the experiment,
the gencral result of observations, in different parts of the globe,
agrees as well with the theory as we have any right to expect,
and justifies us in introducing this variation of the force into
our calculations, at least as an approximate expression of the
facts, to be compared hereafter with more extensive experience.

8. The force acting on the needle of a compass, limited to a
horizontal motion, is reduced, according to the principles of the
resolution of forces, in the ratio of the radius to the cosine of the

dip, so that it becomes proportional to ::%, or inversely
w v = v — +3).

| =as 1—-ss

9. Such being then the magnitude of the horizontal force
acting in the direction of the magnetic meridian, we may readily
determine the effect of its combination with another force acting
in any other direction, so as to afford a result expressed by the
thind side of the triangle of forces: for the sine of the angle,
formed by thiz new result with the first line, will be to the sine
of the angle which it forms with the second, as the second line
to the first 5 or, in other words, the sine of the angle formed by
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the actual direction of the needle, with that which would have
been its direction if the magnetic force had been undisturbed,
will be to the sine of the angle included by its actual direction,
and the direction of the disturbing force, as the magnitude of
the disturbing force to that of the natural force ; and supposing
the disturbing force of the ship to be constant in different parts
of the globe, the sine of the angular correction, required for its
effect, will vary directly as the sine of the angular distance of
the needle from the ship’s head, or from any other given necutral
line in which the disturbing force of the ship is found by expe-
riment to act, and inversely as the magnitude of the horizontal

’
the sine of the bearing of the ship’s head, or other “ point of
change,” as ascertained by the actual indication of the compass,
and not by the corrected bearing, which has sometimes been
employed in a similar calculation, and s the sine of the dip ; the
quantity under the radical sine being equal to the square of the
secant of the dip increased by 3.

10. If, for example, the utmost disturbance were found to
be 5° 40’, where the dip is 74° 23/, its sine would require to be
increased, when the dip became 86°, in the ratio of 1 to 3.523,
and the maximum of disturbance would become 20> 21", Tt is
scarcely possible that the calculation should agrec better with
the result of the observations made on board of the Isabella : so
that we may employ it, with some confidence, for our assist-
ance, in correcting the errors arising from the disturbing force
of the ship in all ordinary cases.

11. When the ship’s attraction is constant, it is obvious that
the two neutral positions, in which it produces no disturbance,
will be observed when the ship’s head is exactly in opposite
directions. But it appears that there is sometimes also an
irregular attraction, causing the two neutral points to be within
8 or 10 points of each other ; and when this happens, we can
ouly rely on immediate observation in different parts of the
globe for determining the requisite corrections. This part of
the disturbance, however, scems not to increase with the dip,
and there is every reason to attribute it to the temporary or
induced magnetism of some portions of soft iron ; since it way

magnetic force; that is directly as r / (i_l—“ + 3) ; r being



No. XL OF THE EFFECT OF A SHIP'S ATTRACTION. 105

easily be shown, for example, that a horizontal bar of soft iron
will luee its effect on the needle in four positions, at right angles
to each other, and a bar so inclined, as to become perpendi-
cular to the dipping needle in the plane of the meridian, will
lose its effect in its two opposite positions, in that plane, only,
but will act with very different intensities in their neighbour-
hoods, so as to produce different effects in positions diametri-
cally opposite to each other; and from various combinations
of such pieces, differently situated, we may easily imagine that
all the irregularities, observed in some very few cases, may have
ul"igiﬂlﬁfd.

12. TaBLE OF CORRECTIONS FOR CLEARING THE COMPASS OF THE REGULAR
EFFECT OF A SHII'S PERMANENT ATTRACTION,

Apparent distance of the Ship’s head or other Neutral Point from the
maguetic North, in points

1 3 3 4 5 6 7 8
15 14 13 12 11 10 9 8

5913 - .R839 | 1.0458 ' 1.1505 | 1.2209 ' 1.2666 | 1.2926 | 1.3010
I Laeto | onese | 1,0475 ! 11522 | 1.2226 | 1.2683 | 1.2043 | 1.3027
2 W5us3 | L5909 | 1.0528 | 1.1576 | 1.2280 1 1 2737 | 1.2997 | 1.3081
M oae? L9013 | 1.0632  1,1679 | 1.2383 | 1.2840 | 1.3100 | 1.3184
‘q-

Ta

L9191 | 1.0810 ' 1.1857 | 1.2561 | 1.3019 | 1.3278 . 1.3362
«9499 | 1 1118 | 1.2165 | 1.2869 | 1.3326 | 1.3586 , 1.3670
ownse | 1.1673 1 2721 1 1.3424 1 13882 | 14141 1.4226
toosol | 1.2120  1.3167 | 1.3871 | 1.4328 | 1.4588 ' 1.4672
5 1,114 | 1.2760 | L3808 | 1.4511 | 1.4969 | 1.5228 | 1.5313

——

1.1301 1.2920l 1.3968 | 1.4672  1.5129 | 1.5389 | 1.5473
1.1479 0 1.3095 | 1.4142 | 1.4846 | 1.5303 ' 1.5563 1 1.5647
1.1665 11,3284 l 1.4331 | 1.5035 | 1.5492 i 1.5752  1.5836
LAARTE . 1.3490 . 1,4538  1.5241 | 1.5699

1.5958 1.6043

: Lo2mgs | 13715 0 1.4763 | 15466 | 1.5924 1.6183 - 1.6268
! ! )

: 1.2743 | 1.3962  1.5010 | 1.5713 | 1.6171 | 1.6430 | 1.6515

- Lo2e14 | 14233 01,5281 l 1.5985 | 1.6442 | 1.6702  1.6786

L2ob4 104533 01,5581 | 1.6285 | 1.6743 | 1.7002  1.7086
T om2be 1L 4ANGT 15914 1 L6618 | 17075 11,7335 | 1.7419
|

1.3620 ¢« 1.5239 | 1.6286 | 1.6990 | 1.7447 | 1.7707 1 1.7791

-t [IPR B R R Y TIM
L B Y ]

1.565%  1.6706 | 1.7400 | 1.7867 | 1.8126 1.8211)
L.AINS o 17182 | 1.78RG | 1.8343  1.8603  1.8687
Tonnrd - 17730 | L.8404 | L8892 | 1,915 1.9236

. 1.7325 | 18373 | 1.9076 | 1.9534 . 1.9763 1 9878
- ; lovoxd | 1.9131 | 1.9835 | 2.0293 | 2.0352  2.0636
- 1.9043 . 2.0091 | 2.0704 | 2.1282 | 2.1511  2.1506
- 2. 2.1325 | 2.2028 | 2.2486 2.23746 2,2
.. 2,300 2,378 12,4236 22,4495

. ,

2.6078 2.6782 | 2.7240 I 2.7499
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Use of the Table.

Find by observation the greatest disturbance produced by the
ship’s action on the compass in any given part of the globe, and
subtract from the logarithm of its sine the number in the last
column of the table opposite to the given dip, the difference will
be the logarithm of the constant multiplier for that ship ; and
if it be added to the tabular number for any other place, or for
any other position of the ship, it will give the logarithmic
sine of the correction required on account of the permanent
attraction,

ExAMPLE.

Supposing the utmost disturbance in the Tsabella to be 5° 40,
when the dip is 74° 23’; the numbers of the last column for
74° and 75° being 1.6043 and 1.6268, the difference .0223 be-
comes, for 23’ .0085, and for 74° 23’ we have 1.6128, which,
subtracted from 8.9945, the logarithmic sign of 5° 40’, leaves
7.3817, the logarithn of the constant multiplier for the Zsabella ;
then the greatest tabular number for the dip 86° being 2.1596,
adding this to 7.3817, the sum 9.5413 is the logarithmic sine
of 20° 21', the greatest disturbance where the dip is 86°; and
when the ship’s head, or the neutral point, or point of change,
appears by the compass to be N.E., or 4 points from the mag-
netic North, the tabular number at 74° 23’ will be 1.4623, and
the logarithmic sine 8.8440, answering to 3° 58'; and at 86°,
2.0091, giving the logarithmic sine 9.3908, and the angular
correction 14° 14/, so that the true situation of the ship will in
this instance be more than a point further from the magnetic
North than the compass indicates; it is also obvious that the
correction will be very different from that which would be
required, if the actual bearing of the ship’s head were N.E. or
N.W.

13. According to the observations collected and computed
by the laborious and accurate Professor Hansteen, we have the
actual intensity of the magpetic force in different places, as in
the following table.
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- Dir. Intensity.

Peru - - - 0°0 1.0000
Mexico- - - 42 10 1.3155
Paris - - - 68 38 1.3482
London - - 70 33 1.4142
Christiania - 72 30 1.4959
Arendahl - - 72 45 1.4756
Brassa - - - 74 21 1.4941
Hare Island - 82 49 1.6939
Davis Straits - 83 8 1.6900
Baffin’s Bay - 84 25 1.6685

84 39 1.7349

84 44 1.6943

85 594 1.7383

8 9 1.7606

14. Notwithstanding the general agreement of this theory,
with many of the observations made in the northern seas, it is
still possible that some ships may have no permanent attraction ;
and there is reason to believe that the induced magnetism of
the iron about a ship may not uncommonly have a perceptible
effect on the compass ; especially as it appears, from Mr. Bar-
low’s experiments, that the guns are to be considered, with
respect to magnetism, as soft or conducting. It will therefore
be proper to inquire into some of the principal phenomena
which may be induced from this cause.

15. If all the nails and bolts about the ship, together with the
guns and ballast, were equally distributed in all possible direc-
tions, with respect to their longest dimensions, or even equally
distributed into any three different directions perpendicular to
each other, the effect on the needle would be very nearly the
same as that of a single bar placed in the direction of the dipping
necdle, or of a sphere or shell of equivalent dimensions ; so that
it becomes interesting to inquire what would be the effect of
such a sphere on the compass.

16. Suppo-ing the sphere to be placed immediately before
the compass, and on the same level with respeet to the decks,
the disturbing force would always completely vanish when the
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ship’s head pointed east or west; so that this is a case which
may be excluded from further consideration.

17. In all other cases it may be shown that the needle, if
otherwise at liberty, would be directed towards a point in the
magnetic axis of the sphere at which it meets a plane, perpen-
dicular to the line joining the sphere and the compass, and at
one-third of the distance of the compass from the sphere. The
direction of the force referred to the horizontal plane will be
the projection of this direction, and its magnitude may be
found from the relative latitude of the compass, with regard to
the axis of the sphere (N. 6), requiring also to be reduced to
the horizontal plane.

18. But for an easy and useful example of the result of
such a calculation, it will be sufficient to take a case in which
the primitive directive force of the sphere remains always hori-
zontal, and the reductions are avoided. This will happen
when the distance of the sphere before the compass, q, is to 3,
its depth below the compass, as v/ 2 to 1; and when the ship’s
- head is at the same time E. or W. Now the dip being D,
the distance of the intersection of the axis with the plane
already mentioned and with the horizontal plane, from the
middle of the ship’s breadth, will be & cot D, and the cotan-

gent of the spontaneous deviation, g cot D = & 4 cot D, the

1-3ss
1+ss8"

The magnetic latitude A, with respect to the sphere, will be such
that sin A = 2222 ¢ being #/(a* + ) = v 20+ 8") =/ 3b and

gin A = 4/ } sin D = &/ 4.5 ; consequently the sine of the dip ¢

with respect to the sphere is found j(/li T :6) =y 7 (32 _: gasy° and

tangent +/ 2 ta D, the sine = 4/ i%:i’ and the cosine »/

sin

the magnetic force of the sphere, which varies as 5 (N. 6)

or here as :F:n——": may be represented by +/(1+ss), considering

the magnetism of the sphere as constant. But the magnetism
of the sphere is proportional to that of the earth itself at the
place of observation, so that the law of the composition of
these forces is not affected by the change of their magnitude :
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the direct force of the ea:th, however, requires to be reduced
to the horizontal plane, while that of the sphere is already
exerted in that plane. The direct force therefore may be
called &/ (1—ss) and the disturbance f & (l1+4ss): which
reduced to the direction of the magnetic meridian, becomes

VY (1+ss) v :;:: = f+/ (1 —ss) and to the transverse direction

SV (14s8) v ;‘::‘ = f &/ 2,5. The joint force in the direction

of the meridian will therefore be always (1+f) V (1—ss)
and the transverse force J/ 2. f s: consequently, the tangent
VA A .
1+f  s(1-3s9)
proportional to the tangent of the dip, and to that of the mag-
netic latitude.

19. Hence it appears that the tangent of the angular distur-
bance produced by the induced magnetism of a mass of iron
so situated when the ship’s head is E. or W., will vary as the
tangent of the dip. It will also be in opposite directions on
opposite sides of the magnetic equator. The disturbance on
board the Isabella, in latitude 86°, if derived from this cause,
would amount to 21° 19’ ; and it is remarkable, that conclusions,
8o nearly agreeing, should be derived from suppositious so
totally different.

20. It is not improbable that the soft or conducting iron
about a ship may often be so arranged as to produce effects
considerably resembling those of a sphere or shell situated
before the compass, and as much below it as is here supposed ;
but the proposition cannot be generally maintained that a sphere
may always be so placed as to produce effects equivalent to
those of the ship’s magnetism, however the guns and ballast
may be arranged. Supposing, indeed, the guns to coustitute
the principal part of the iron concerned, the deviation should
vary initially in a ratio ncarly approaching to that of the square
of the sine of the apparent distance of the ship’s head from the
magnetic meridian, amounting to half of the maximum at
about 457, instead of about 30°, as it commonly appears to do;
since the intensity of the induced magnetism of the guns would
vary nearly as the simple sine of the distance, and its effect on

of the angle of disturbance will be , which is
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the compass again as the same sine, The deviation produced
by the sphere would follow a very different law, but it is
scarcely probable that this law would agree well enough with
the results of observation, to make it necessary to investigate
it here in a general manner. It is, however, obvious, that
when the compass is in the plane of the magnetic equator of
the sphere, the direction of the needle, as influenced by it, will
be parallel to the magnetic axis of the sphere, and consequently
in the magnetic meridian of the earth, so that the disturbance
will disappear as it did in Mr. Barlow’s experiments; and this
circumstance, if it were ascertained by observation, would assist
us in determining the place of the supposed sphere in the ship.
But in the case here stated as an example of the situation of
the sphere, the disturbance would never vanish, unless the dip
were less than 54° 44’ : the cosine of the angle formed by the
ship with the meridian, when the force vanishes, being +/ % the
tangent of the dip : and this would happen first, in the northern
hemisphere, when the ship’s head pointed nearly south, while
in the situation diametrically opposite, the disturbance would by
no means vanish : so that the supposition of an induced mag-
netism, like that of a sphere, does not appear to be consistent
with actual observation. Nor is it possible that a sphere should
be so placed as to cause no disturbance whatever at the mag-
netic equator : and if the disturbance really vanishes at the
equator, as has been asserted, it can only arise from an effect
resembling that of the induced magnetism of a vertical bar.
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No. XLI.

A BRIEF INVESTIGATION OF THE PROPERTIES OF THE

GEODETIC CURVE.

From Brande’s Quarterly Journal for 1826, vol. xxi. p. 136.

PROFESSOR BESSEL has lately premised to his very elaborate
and refined computations of latitudes and longitudes, on a
spheroid, a demonstration of the elementary property of the
curve of shortest distance, founded, as he says, on the theorem
of Taylor, which affords him, for U’, a value of U correspond-
ing to ¢ + 2, as a value of ¢, z being a function of w, the

expression “ U + ( ) + (dU di, .« . This may

indeed be perfectly correct: but it would probably have
surprised Dr. Brook Taylor not a little to see himsclf made
responsible for such an inference: which it would have cost
him much more labour to comprchend than it did to invent his
theorem : and it would have staggered him most of all to sce
his finite increment “ A" converted into a new flowing quantity
z, and baving a distinct fluxion assigned to it.

The true and natural method of solving these problems, and
by far the simplest and most intelligible, is to use a scparate
notation for the variation of the curve, in its transition into
another neighbouring curve: and, for a spheroid of rotation, the
variation may be most conveniently supposed to be effected by
the clementary removal of the points along the samne parallels
of latitude only, so that the curvature of the elements of latitude
and longitude may remain unaltered.

Thus, if x be the angular latitude, y the longitude, and s
the lincar distance, R being the radius of the mweridian, and r
that of the parallel of latitude: we shall obviously have (1)
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ds* = R? d2* + 7* dy* ; and hence, following exactly the steps
of the Elementary Illustrations of Laplace, No. 289, Sch. 2,

P. 152,we have 3ds = smy, since 3z=0; and since d ( rdy 3y) =
1:]1 ddy +d'ﬂ8y 'sdy ddy + d y3_/, we have f 3ds =
3y Ik dy =3s. Now in order that the distance

may be the shortest possib]e, this fluent, taken between the
extreme points of the curve, must vanish ; and at each of these
points the variation 3y must wholly vanish, although it is sup-
posed at the intermediate points to have a value comparable to
the other varying elements: consequently the second part of

the fluent, f d y 3y, must be every where = 0, since it

cannot have alternately positive and negative values, con-
sistently with the required property of the curve, which must
everywhere be the shortest possible : and this can only happen

rrdy dy . . rdy
when d —= =0, and 7* 3 is a constant quantity. But e

is the sine of the inclination of the curve to the meridian,
which must therefore be inversely as r the radius of the

parallel of latitude, in order that r %’ may be constant.
8

Mr. Fog Thune, assisted by Professor Bessel, has investigated-
the curve more generally, by the method of variations, in his
Spheroidical Trigonometry, without limiting it in the first
instance to a spheroid of rotation. We may now proceed to
Professor Bessel’s latest computations.

This investigation is followed by a translation of Bessel’s formule aud ‘computa-
tions for geographical latitudes and longitudes on a spheroid.— Note by the Editor.
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No. XLIL

A SIMPLE RECTIFICATION OF THE

GEODETIC CURVE.

From Brande’s Quarterly Journal for 1826, vol. xxi. p. 153.

Proressor BEsseL’s investigation of the properties of the
geodetic curve, though most ingenious and successful, is yet so
intricate and complicated, that it is easier to obtain a new
solution of the problem, than to verify the steps of his re-
searches in such a manner as to fulfil the whole duty of a
scientific translator. For obtaining this solution it is only
pecessary to set out in a right direction ; and considering the
dependence of the curve on the distance from the axis, r, it is
patural to inquire whether its properties may not be most con-
veniently expressed in terms of that quantity. The equation of

the ellipsis being :—f —— = 1, and z being the r of this
investigation, we have :'-; +7&3 =1, % + %— = 0; and the
square of the fluxion of the arc of the meridian, which is equal
to dr* + dy*, dy being = —?—;’-"dr, becomes dr* + - 7 dr,
. b

orsince y* = B — 218, drt (1 4 o — 2 ) = dr’(l+
;b_'—':,—'.); and making the least value of r equal to g, we have
every where { for the sine of the azimuth, and for the square
ofiu«:ouinel—%:"—;ﬂ. Henccd;’:dr"_Lw(1+
r—). Making now r* — ¢* = 9%, we have rdr = ydy, dr =
,4 at-(a' - bt

7,dr = 224y, and 48 = dy* () 4 o) = dy? TSESD,

or, if @l = &, det = dy T250, and de=dy V(a* =g - ey)
voL. 1. 1
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1

V s = /@ = 0 V(1 - )
/\/l—-——-lyy =d7 ‘\/(a‘-e‘g*) J(l —f’x’) a‘-.lalﬂ'
as—gg

. (s
’\/l—lxx; ’be‘“8=—" o X = aaghor S =

a, .y, -9 ¢80 that dy, = J(M =’ whence ds = dy, J(aa—yg)

at—e'y®
\/a‘-a‘g' v - %) '\/l-xx = V@ ys) (l-xx)
(l—%f’X.’*‘%f‘ ‘—i%f.x."'i%'sfe ®—...). The
fluents may be found by Hirsch’s Tables, p. 143 ; and we shall

have s = ¥ (@ ~ ) (P -3/ Q+5f R—pf* 8
+..');Pbeingmsinx’Q= ﬂ-i‘_;m'_l.,’ﬂ=?o-—":e_u_f,
S = w’x;“‘ Pr- 78_”;“‘1), and so forth.

It will be convenient to have the values of thcse ﬂuents

expressed in a table, for different values of ¥, or J yg, from

0 to 1; such a table will probably be inserted in the next
number of this Journal; and it may also be useful on many
other occasions, giving, for example, the length of an elliptical
arc, wheng = 0, % = %,fbeingtben = i
The value of r may be readily found from the latitude and
‘the ellipticity: for ¢ being the tangent of the latitude, we
@y . _% W s B onpo
h&vet ys:’Tb'—' t’ -,y’—b‘—mr’,t’ 7
- bb b \
i R I L DT

a’rs r

at a* . . _l
a“d"'bba-e-aa‘gt.H’Mdlfwe made a , and b
aa
el—grf=—-t _ _.onife= P = —0
> T+u—2dt+ate’ 300’ 1+ lf”tz
150

very nearly.
Having found the values of r, for any two latitudes, by this
formula, we can easily compute the corresponding value of s;
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and if s is given by measurement, we can correct the supposed
value r from the error of s, and the azimuth of the curve, the
sine of which is always % .

In order to find the angular diﬁ'erence of longitude, we must
multiply the fluxion ds by the sme , and divide it by the -

radius r, and we have 91'— =3 \/":yy H,:dr=g

at - &t - 9'1(")
(a* +a'¢")r* — a*r' = a'y* \/(a‘-f-a’g')r‘-—a‘r‘—a‘g"
of which the fluent may be found by comparison with the
2 dsr .

m of HII‘SCh, P- 187, 183, 185; Suppl. Enc.
Brit,, Art. FLueNTs, No. 353 ; or perhaps more conveniently
by multiplying the series already found mto the development of

1 1 ol

== vl b +”"5'( +?—9.+ ..);and

this will be suﬂicxently convergent when o is small; when
larger, the direct computation of the fluents will be required,
which is necessarily a little more tedious, as it cannot be
materially assisted by a table ; and this may possibly have been
the reason that Professor Bessel has employed a different mode
of investigation.

In page 337 of the same volume of the Quarterly Journal is given ¢ A Table of
Coefficients subservient to Geodetical Computations.,” The Table of Fluents formed
a8 recommended in the text, was found to be very volummoun, and therefore not

mserted, exhibiting a striking contrast to Bessel’s tables, both in simplicity and facility
of application,— Note by the Editor.

12
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No. XLIIL

CALCULATION OF THE RATE OF EXPANSION

OF A 8UPPOSED

LUNAR ATMOSPHERE.*

From Nicholson’s Journal of Natural Philosophy and Chemistry for 1808,
vol, xx. p. 117,

o Mr. NicHOLSON.
Sir,

IT has been a subject of inquiry among some who are
attached to astronomical speculations, whether or no, if the
moon had ever been possessed of an atmosphere equally dense
with that of the Earth, she could have retained it, without a
very sensible diminution, in consequence of the Earth’s attrac-
tion, upon the supposition of the infinite dilatability of the
air, with a density always proportional to the pressure. The
inquiry involves a great variety of considerations, and it would
be extremely difficult to make an exact calculation of all the
particulars connected with it ; but it may be shown from some
general principles that the diminution would bave become per-
ceptible to a spectator situated on the Earth, in the course of a
few centuries.

If a be the distance of the moon from the earth, and z
the distance of any other point in the line joining them, the
force of gravitation will be as ;'. ~10 (71-5,; and the centri-
fugal force, arising from the revolution round the common
centre of gravity, to be added for the terrestrial atmosphere,

* This article and the two which follow are inserted as examples of the brevity
and apparent simplicity of Dr. Young’s mode of dealing with very difficult problems :
unfortunately they form no exceptions to the extreme obscurity whi usually
characterizes his applicat f mathematics to physical inquiries, more especially

rx o
in early life, when he had little knowledge of, and no respect for, the forms of mod
analysis.—Note by the Editor. ’ ’ em
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and to be subtracted for the lunar, being equal to the force of
gravitation at the distance of the centres, the joint force f

acting on the particles of the atmosphere will be as 37707 a: D

1 1 1 .
+5o» and —70-(;_—:5,— o respectively : or, since f must be

cqual to unity at the earth’s surface, when z is equal to the

earth’s semidiameter 3, f =:'—‘ near the earth, without sensible

crror, and f =§ ~ 0 (-‘:—‘),— g, for the lunar atmosphere. Then

the density being y, which may also be called unity at the
earth’s surface, we have—c ¥ =fyz, and it is obvious that ¢
must express the height of a column of air of uniform density
mpable of producing the pressure by its weight, in order that
-c y may be initially equal to #. Hence we have H. L .

1 . . ¥

y 9;. Jf%; but fz=b’(;—.— 10 m— ai) therefore H. L.
; cg (d - —:— 70 (a = ),d being, without sensible error,
l+; Now b is 3958, and ¢ 5.28 miles, and at the moon's

surface r is about 600, and a —z = 1 b; whence H‘L‘;T =685.69.
Again, when f vanishes, and the density is least, ;= Gl_x),J,
:, and r is nearly .825 a, whence H. L. ;— =724.31; and this

density is to the density at the moon’s surface as 1 to the num-
ber of which the hyperbolic logarithm is 38.62, and the common
logarithm 16.773 : and supposing the density to be increased
in any given ratio, the proportion will remain the same, the
number ¢ still indicating the height of a column equal in
density to the atmosphere, thus condensed, at the carth’s
surface.

Now the expansion of the lunar atmosphere, supposing it
to be equal in density to that of the Earth, and to extend to the
point where the force f vanishes, which is the most favourable
condition for its permanence, may be determined from this ge-
neral principle ; that the motion of the centre of gravity of any
syatem of bodies, some of which are urged by a greater foree in
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one direction than in another, must be the same as if the difference
of the forces acted on the whole system collected into the centre
of gravity. Thus, if the pressure of the highly rarefied air,
at the termination of the supposed lunar atmosphere, which
would have kept it in equilibrium, be removed, the elasticity of
the column pressing on the moon will be by so much greater
than its gravitation; and the centre of gravity of the column
will be repelled, with a velocity as much smaller than that of a
body falling at the Earth’s surface, as the pressure removed is
smaller than the weight of the column: but this ratio is com-
pounded of that of the densities at the opposite ends of the
column, and that of the force of gravitation, or rather the force
f;, near the moon’s surface, to its force at the surface of the
Earth, since the mass required to produce the given density, by
its pressure, is as much greater, as the gravitation is smaller; and
if we diminish in this proportion the space which a falling body
would describe in a century, we shall have 514 feet for the ele-
vation of the centre of gravity of a column of the lunar atmos-
phere in that time.

But in order to estimate the effect of such a change, we must
calculate the actual height of the centre of gravity of a given
column of an elastic fluid : and for this purpose we may suppose
the attractive force uniform. The height of the centre of gra-
vity is determined by dmdmg the fluent of zyz by the mass,
or by —y; but since —cy =yz, zy¥= — czy, x being=c (H .

——), or according to a mode of expressmn lately employed by
one of your correspondents, ¢ m (y -= — 1), when m is infinite ;
hence—c zy’ =cem (y’—y-i y), of which the fluent is ¢ .ccm

(y— 1= y £)=e—czy—cy 1 =%, or e=czy~cy; which
must vamsh when y=1 and r=0; consequently e=c, and the
beight of the centre of gravity is c— f—’_"—z; and when y =0, this
height is equal to that of the column ¢, which for the earth’s at-
mosphere is 5.28 miles, and for the moon’s as much greater as

the force is smaller, that is 27.75 miles. The centre of gravity
being therefore elevated 514 feet, or 345 of its height, in a cen-
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tury, the mean density of the column must also be reduced
about yi3; but since a certain part of this elevation depends
on the supposed acceleration of the more distant portions, which
would produce no sensible effect in the neighbourhood of the
moon, we cannot estimate the mean rarefaction of the part
remaining more nearly in its original situation, at more than
about yiv; and this will be reduced to about one fourth for
the mean of the whole atmospbere, surrounding the moon on
all sides: sothat we may take ry'ss for the mean rarefaction of
such a lunar atmosphere in the course of the first century.

So small a rarefaction as this would certainly not be directly
obeervable at the distance of the Earth. Supposing that the
atmosphere would be visible until its density became equal to a
given quantity, the point, at which this density would be found,
would be depressed only about 18 miles, if the whole density of
the atmosephere were reduced to one half, and by a diminution
of rsv, only r'yy of 27.75 miles, or about 120 feet. The
effect of an atmoephere would however be more perceptible in
the refraction, which would occasion an alteration in the appa-
rent place of a star about to be eclipsed, and which would
amount, in the case of the Earth’s atmosphere, to 66 minutes.
But the refractive density of the lunar atmosphere would vary
nearly as the 134th root of the distance, instead of the 7th ; and
the deviation, instead of 66 minutes, would become 13' 50", one
1200th of which would be only 4 of a second, which would still
be imperceptible ; although in two or three centuries, since the
rarefaction would increase at first as the square of the time, it
might perhaps be discoverable ; and this would be considerably
sooner than the decrease of the moon’s apparent diameter could
be observed. It is however scarcely probable, that so slow
a rate of diminution could have reduced the lunar atmosphere
from a density equal to that of the terrestrial atmosphere, to its
present state, in the course of 10,000 years.

1 am, Sir,
Your very obedient servant,

l1EMEROBIUS.
15 May, 1608
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No. XLIV.

A CONCISE METHOD OF DETERMINING THE

FIGURE OF A GRAVITATING BODY

REVOLVING ROUND ANOTHER.

From Nicholson’s Journal for 1808, vol. xx. p. 208.

To Mr. NicHOLSON.
Sin,
It is well known that there are some imperfections in
Sir Isaac Newton’s investigations respecting the figures of gra-
vitating bodies, which have been supplied by Maclaurin and
Clairaut: the subject is however still eonsidered as difficult
and intricate, and the simplest calculations respecting it have
hitherto been too prolix, to be distinctly conceived as links of
the same chain. I shall endeavour to point out a method of
treating it which is extremely compendious and convenient.
Neglecting in the first place the diurnal rotation, we may
suppose that each particle of the body revolves in an equal
orbit, so that its centrifugal force may be equal to the mean
attractive force; then the local attractive force will be greater
or less than this by a difference which must obviously be pro-
portional to the distance from an equatorial plane perpendicular
to the direction of the central body, and tending to remove the
body from this plane. A second disturbing force will also arise
from the want of parallelism in the direction of the attractive
force, which will tend towards the line joining the centres, and
will be every where to the whole force as the distance from this
line to the distance of the bodies. Now if each of these forces
be reduced to the direction of the circumference of the sphere,
from which the figure is supposcd to vary but very little, it will
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be every where proportional to the product of the sine and
cosine of the distance from the equatorial plane, and when
this distance is half a right angle, each of them will be half as
great as in its entire state. Thus the gravitation towards the
moon at the earth’s surface is to the gravitation towards
the earth as 1 to 70 times the square of 604, or to 256217, and
the first disturbing force is to the whole of this as 2 to 604, at
the point nearest to the moon, and the second as 1 to 604 at the
equatorial plane; and the sum of both reduced to the direction
of the circumference where greatest, as 3 to 121, that is, to the
whole force of the earth’s gravitation as 1 to 10,334,000. And
in a similar manner the joint disturbing force of the sun is to the
weight as 1 to 25,736,000.

Now if a sphere be inscribed in an oblong spheroid, the ele-
vation of the spheroid above the sphere must obviously be pro-
portional, if measured in a direction parallel to the axis of the
spheroid, to the ordinate of the sphere, that is, to the sine of the
distance from its equator ; and if reduced to a direction perpen-
dicular to the surface of the sphere, it must be proportional to
the square of that sine; and the tangent of the inclination to
the surface of the sphere, which is as the fluxion of the elevation
divided by that of the circumference, must be expressed by twice
the continual product of the sine, the cosine, and the ellipticity
or greatest elevation, the radius being considered as unity : so
that the ellipticity will also express the tangent of the inclina-
tion where it is greatest ; and the inclination will be every where
as the product of the sine and cosine.

If therefore the density of the elevated parts be considered as
evancscent and their attraction be neglected, there will be an
equilibriom when the ellipticity is to the radius as the disturbing
force to the whole force of gravitation: for each particle situ-
ated on the surface will be actuated by a force precisely equal
and contrary to that which urges it in the direction of the
inclined surface. Hence, if the density of the sca be supposed
inconsiderable in comparison with that of the earth, the radius
being 20,839,000 feet, the hicight of a solar tide in equilibrium
will be 2.0166 fect, and that of a lunar tide .8097.

We murt next inquire what will be the effect of the gravita-
tion of the elevated parts, on any given supposition respecting
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their denaity. Let us imagine the surface to he divided by an
infinite number of parallel and equidistant circles, beginning
from any point at which a gravitating particle is situated, and
let their circles be divided by a plane bisecting the equatorial
plane of the spheroid ; it is obvious that if the elevations on the
opposite sides of this plane be equal in each circle, no lateral
force will be produced; but when they are unequal, the
excess of the matter on one side above the matter on the other
will produce a disturbing force. The elevation being every
where as the square of the distance from the equatorial plane,
the difference, corresponding to any point of that semicircle in
which the elevation is the greater, will be as the difference of
the squares of the distances of the corresponding points of the
two semicircles, that is, as the product of the sum and the dif-
ference of the distances: but the sum is twice the distance of
the centre of the circle from the equatorial plane, or twice the
sine of the distance of the gravitating particle from the plane,
reduced in the ratio of the radius to the cosine of the angular
distance of the circle from its pole ; and the difference is twice
the actual sine of any arc of the circle, reduced to a direction
perpendicular to that of the plane, that is, reduced in the
proportion of the radius to the cosine of the angular distance of
the given particle from the equatorial plane. From these pro-
portions it follows, that, in different positions of the gravitating
particle, the effective elevation at each point of the surface, simi-
larly situated with respect to it, is as the product of the sine and
cosine of its angular distance from the equatorial plane, the other
quantities concerned remaining the same in all positions : the
disturbing attraction of all the prominent parts varies therefore
precisely in this ratio, the matter which produces it being always
similarly arranged, and varying only in quantity ; consequently
the sum of this attraction and the original disturbing force both
vary as the inclination of the surface, and may be in equilibrium
with the tendency to descend towards the centre, provided that
the ellipticity be duly commensurate to the density of the ele-
vated parts.

In the last place we must investigate what is the magnitude
of the ellipticity corresponding to a given disturbing force and a
given density. It follows from the proportions already mentioned,
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first, that the effectual elevation at each point of each concen-
tric semicircle is proportional to the sine of its distance from the
bisecting plane ; and secondly, that the greatest effective eleva-
tion of each semicircle, for any one position of the superficial
particle, is as the product of the sine and the cosine of the an-
gular distance from that particle, the diameter of the circle
being as the sine, and the distance of its centre from the equa-
torial plane as the cosine. It may easily be shown, that the
disturbing force, reduced to the direction of the surface, or of
the plane of each circle, is equal to the attraction which would
be exerted by the matter covering the whole semicircle to
a height equal to half the greatest elevation, if placed at
the middle point : for the elevation being as the sine of the dis-
tance from the bisecting plane, and the comparative effect being
also as the sine, the attraction for each equal particle of the se-
micirele is as the square of the sine, and the whole sum half as
great as if each particle produced an equal effect with that on
which the elevation is greatest. We must therefore compute
the attraction of the quantity of matter thus determined,
suppusing it to be disposed at the respective points of a great
circle passing through the given point and the pole of the
spheroid. The immediate attraction of each particle being
inversely as the square of the chord, its effect reduced to
the common direction will be as the sine directly, and the cube
of the chord inversely, and this ratio being compounded with
that of the product of the cosine and the square of the sine,
which expresses the quantity of matter at each point, the com-
parative effect will be as the cube of the sine and the cosine
directly, and as the cube of the chord inversely, or as the cube
of the cosine of half the arc and the cosine of the whole
arc conjointly. If therefore we call the cosino of half the arc z,
the cosine of the whole arc will be 2:* — 1, and the fluxion

of the arc being — 7—(—:1'—‘5, that of the force will be

z—%‘“—-_‘—:—)}, of which the fluent 18 (t2*+ 32+ 3) v

(1-zr), as may be shown by substituting, in the reduction

. . 1- .
of its fluxion, /_(T—':T) for v (1 =xr): and while z decreases
Js
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from 1 to O, this fluent becomes 4. But in order to determine
the unit with which this quantity is to be compared, we must
consider the initial force as unity, and imagine that it is conti-
nued through an arc equal in length to the radius; and
we must find the attraction of the solid contained between
a circular plane and a conical surface, initially touching the
effective portion of the elevation, and including it between
them ; the attraction reduced to a common direction, being
initially half the whole attractive force of such a solid, as we
have alréady seen of the concentric circles considered sepa-
rately. But the attraction of any slender conical or pyramidical
body for a particle placed at its vertex, is three times as great
as that of the same quantity of matter situated at its base ; con-
sequently the attraction of the supposed solid is equal to that
of the circumscribing semicylinder placed at the distance of the
radius: the conical excavation being half of the solid, and the
semicylinder triple of the cone: but the height of this semi-
cylinder in the case of a particle situated half way between
the pole and the equator of the spheroid is twice the ellipticity,
the tangent of the angle of mutual inclination of the surfaces of
the effective elevation being initially equal to twice the greatest
ordinate, because the product of the sine and cosine, when
greatest, is equal to half of the radius: the semicylinder will
therefore be equal to a cylinder of which the diameter is equal
to that of the sphere, and the height equal to the ellipticity ;
and the contents of this cylinder will be to that of the sphere,
as § of the ellipticity to the radius. Such therefore is the unit
with which the disturbing attraction is to be compared; and
when the densities are equal, this force will be to the whole
weight as %, 4, or & of the ellipticity to the radius; and the
portion of the inclination remaining to be compensated by the
primitive disturbing force will be 4 of the whole, so that the
ellipticity must be to the proportional disturbing force as 5 to
2. And if the density of the sea be to the mean density of the
earth as 1 to », the disturbing force, produced by its attraction,

will be to the ellipticity as ;1”- to 1, and the primitive disturbing

forceas I — %to 1.
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The heights of the solar and lunar tides in equilibrium having
been found equal to .8097 and 2.0166 feet respectively, on the
suppoeition of the density of the sea being inconsiderable, they
must be increased to 2.024 and 5.042 for an imaginary planet of
uniform density ; but since n is in reality about 54, and —:—.
nearly }, the ellipticity must be to the primitive disturbing
force only as 1 to § or 9 to 8, and the height of the tides in
equilibrium .911 and 2.269 respectively, and the joint height
3.18 feet. And when the surface assumes any other form than
that which affords the equilibrium, the force tending to restore
that form is always less by one ninth than it appears to be when
the attraction of the elevated parts is neglected. The theory of
the tides must therefore be very materially modified by these
considerations, although they do not aﬁ'ect the general method
of explaining the phenomena.

These calculations are also immediately applicable to the
figure of an oblate spheroid : for it may easily be shown, that
the difference of the elevations in the opposite halves of each
semicircle is precisely the same in an oblate as in an oblong
spheroid of equal ellipticity : so that the ellipticity must
bere also be to the disturbing force, where it is greatest, as
1 to 1- %—, or to the centrifugal force at the equator as

1to2———. Thus, the centrifugal force being r, if the density
were uniform, the ellipticity would be i+ ; but since it is in
reality about vix, 2 — ;= =4, and n=1.32, n implying here

the mean density of the carth compared with the mean density
of the elevated portion of the spheroid, which hence appears to
be about three fourths of that of the whole earth. It is obvious
that, in this case as well as in the former, if the density of
the sea were two thirds greater than that of the earth, the
slightest disturbing force would completely destroy the equili-
brium, and the whole oceun would be collected on one side
of the earth.
I am, Sir,
Your very humble servant,

A.B.C.D
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No. XLV.

CALCULATION OF THE DIRECT

ATTRACTION OF A SPHEROID,

AND DEMONSTRATION OF CLAIRAUT'S THEOREM.

From Nicholson’s Journal for 1808, vol. xx. p. 273.

To Mr. NicHOLSON.
Sir,

TaE same mode of calculation, by which the figure of a
gravitating body, differing but little from a sphere, has been
determined (No. XLIV.), is also applicable to the magnitude
of its immediate attraction, or the comparative length of a
pendulum in different latitudes.

Suppose a sphere to be inscribed in the spheroid, and another
to be circumscribed about it ; I shall first show that the attrac-
tion at the pole is equal to that of the smaller sphere increased
by 1's of that of the shell, and at the equator equal to that of
the larger diminished by +%. If we call the attraction of this
shell 2, its surface being equal to the curved surface of a
circumscribing cylinder, the attraction of a narrow ring of this
cylinder, or of the elevated portion of the spheroid at the equa-
tor, supposed to act at the distance of the radius, or unity, may
be expressed by its breadth; but in its actual situation its
attraction in the direction of the axis is reduced in the ratio of
the cube of the chord of half a right angle to the cube of the
radius ; and the attraction of any other ring will be to this in
the ratio of the quantity of matter, or the cube of the sine of the
distance from the pole, and of the versed sine directly, and in
the ratio of the cube of the chord inversely; that is in the joint
ratio of the cube of the cosine of half the angle and the versed
sine : thus, if we call the cosine of half the angle r, the versed
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sive being 2—2:% and the fluxion of the arc ———— J(‘ "), the
fuxion of the force at the equator will be —— 2./2 J(l T and
elsewhere as much less as 2* (2 —22*) is less than —, that is,

24/2’

J:'-::) 7 (1 ‘_), of which the fluent is found as before (4

Py~ %)¥ (1—-2zz); and this becomes & while r in-
creases from O to 1, being to 2, the attraction of the whole
shell, as s to 1; but if the radius of the sphere be 1 and the
ellipticity ¢, the attraction of the shell will be to that of the

sphere u? to 1, n being the mean density of the sphere, com-
pared with that of the superficial parts, and the attraction of
the spheroidal prominence will be expressed by :—‘, that of the

sphere being unity.

The depression below the circumscribed sphere is equal, on
the meridian, to the elevation above the inscribed sphere; but
vanishes at the equator, being every where proportional to the
square of the sine of the latitude ; so that the mean depression
of each of an infinite number of rings, of which any point of the
equator is the pole, must be half as great as the elevation of the
corresponding rings parallel to the equator; and the whole
deﬁciency is equal to half of the whole excess, that is, to

comequently the remaining attraction of the shell is 5',

fmm which we must deduct the diminution of the attraction
of the inscribed sphere 2e, and the whole will become 1+

%’—k, which subtracted from l+ ° leaves 2¢ — — for the

excess of the immediate attraction at the pole above the equa-
torial attraction ; to which if we add the centrifugal force f, the

whole diminution of gravity g will be 2¢ — -+ f; but since ¢

wubeforefoundbofaslto?——or_w- % - J» we have

INa—9 10-9 20m-15
o =ime Had =< Sito which if we add e

=15 f=4f; and this is the cclebrated theo-

we find e4g= T

rem of (‘lumut.
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It remains to be shown, that the diminution of the attractive
force at different parts of the spheroid varies as the square of
the cosine of the latitude. The elevation, being every where
proportional to the square of the distance from the axis, may be
divided into two parts ; one proportional to the square of the
sine of the distance from the meridian of the place, and the
other to the distance from the plane of another meridian
perpendicular to it: but the first of these being constant,
whatever may be the position of the place to be considered, the
second only produces the variation. Now if we take in the
second portion the mean of the elevations at any two points of
a less circle equidistant from the meridian, it will be propor-
tional to the sum of the squares of the distance of the centre of
the circle from the axis, and of the cosine of the distance from
the meridian in the same circle, reduced to a similar direction,
that is, diminished in the ratio of the radius to the sine of the
latitude, since twice the sum of the squares of any two quanti-
ties is equal to the sum of the squares of their sum and their
difference. We have therefore two quantities, varying as the
square of the cosine and as the square of the sine of the lati-
tude respectively : but the square of the sine may be repre-
sented by a constant quantity diminished by the square of
the cosine : and the decrease of the attraction of the inscribed
sphere is as the elevation, which is as the square of the cosine ;
the centrifugal force reduced to a vertical direction is also as the
square of the cosine. 'We have therefore, beside two constant
quantities, two negative forces and a positive one, all varying as
the squares of the cosine of the latitude; and it is obvious, that
the joint result of the whole, or the upper real diminution of
gravity, must also vary in the same proportion.

A.B.C. D.
29 June, 1808.
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No. XLVIL
ON THE EQUILIBRIUM AND STRENGTIH OF

ELASTIC SUBSTANCES.

From the Mathematical Elements of Natural Philosophy, in the second volume of
Dr. Young’s Lectures, scct. ix. p. 46.*

1. DeriniTION. A substance perfectly elastic is initially
extended and compressed in equal degrees by equal forces, and
proportionally by proportional forces.

2. DeriNITION. The modulus of the elasticity of any sub-
stance is a column of the same substance, capable of producing
a pressurc on its base which is to the weight causing a certain
degree of compression, as the length of the substance is to the
diminution of its length.

3. Treoren. When a force is applied to an clastic column,
of a rectangular prismatic form, in a direction parallel to the
axia, the parts nearest to the line of direction of the force exert
a resistance in an opposite direction ; those particles, which are
at a distance beyond the axis, equal to a third proportional to
the depth and twelve times the distance of the line of direction
of the force, remain in their natural state ; and the parts beyond
them act in the direction of the force. ¢

The furces of repulsion and cohesion are initially proportional to the
«-anjrssion or extension of the strata, and these to their distance from
tie: pont of indifference : the forces may therefore be represented by
the: weight of two triangles, formed by the intersection of two lines in
the pusint of inditlerence ; and their actions may be considerad as coneen-

® This article han been reprinted 10 consequence of the ciiginality and importance

sotae of the propesitions which it contams. It was not included m - the new

St ot e Youn s Loctare ) which was elited by Profiscor Kelland,  Note by
L N TN

vol. Il h
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trated insthe centres of gravity of the triangles, which are at the
distance of two thirds of the length of cach from the vertex, and at the
distance of two thirds of the depth from each other. This distance
constitutes one arm of a lever, which is of constant length, while the
distance of the line of direction of the force from the centre of gravity of
the nearest triangle constitutes the other arm ; and calling the distance
of the line of direction of the force from the axis, a, and the depth b, the
length of this arm, on the supposition that the point of indifference is at

. . . W b bb
the assigned distance, will be a 4- e i (& b4 m), ora 44—
— 3D, that of the constant arm being $b. The cohesive and repulsive
forces must therefore be as a 4 %—gb to a +% + 45, since that

which serves as the fulerum of the lever must bear a force cqual to the
sum of the two forces applied at the ends, which are proportional to the
opposite arms of the lever ; or as 36aa —12ab-}-bb to 36aa+-12ab-4-bb,
that is, as (6a—b)* to (6a+b)": but these forces are actually as the
squares of the sides of the similar triangles which represent them, that

. bb \® bb \* .
is, 15 (—par) to (40 + ) » OF a5 (6a—B)" to (6a-+b)", which
is the ratio required : there will therefore be an equilibrium under the
circumstances of the proposition.

4. TueoreM. The weight of the modulus of the elasticity
of a column being m, a weight bending it in any manner f; the
distance of the line of its application from any point of the
‘axis a, and the depth of the column &, the radius of curvature

Supposing first the force to act longitudinally, and a = }b, the point
of indifference will be in the remoter surface of the column, and the com-
pression or extension of the nearer surface will be twice as great as if
the Yorce had been applied equally to all the strata; and will therefore
be to the length of any portion as 2f to m; but as this distance is to

the length, so is the depth to the radius of curvature, or 2f:m::b: ;i,

which is the radins of curvature when @ = 3b. But when a varies, the cur-
vature will vary in the same ratio; for the curvature is proportional to
the angle of the triangles representing the forces, and the angles of either
triangle to its arca divided by the square of its length; but the force

exerted by the remoter part of the column is to f as a +%—;b to 3b,

or as (6a—>b)* to 24ab, and is equal to ﬁfﬁ' (6a—b)*, but the square
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of the side of the corresponding triangle is (,}b-— %).’ or (6a — b)".
120
comes %y, and the curvature varies directly as a, and as f, and inversely

(L)., consequently the force, or the arca, divided by this square be-

a8 b® : but since m varies as b, we must make the cxpression for the
radins ofmrnhxre%, which becomes :—;
varies as b3 directly, and as a and f inversely.
If the force be applied obliquely, its effect may be determined by
finding the point at which it meets the perpendicular to the axis, and
resolving it into two parts: that which is in the direction of this perpen-
dicular will be counteracted by the lateral adhesion of the substance, the
other will always produce the same curvature as if the force had been
originally in a direction parallel to the axis: but the place of the point
of indifference will be determined from the point of intersection already
mentioned, and when the force becomes perpendicular to the column, the
neutral point will coincide with the axis,
ScroLiuM. If one surface of the column were incompressible, and all
the resistance of its strata were collected in the other, the radius of cur-
bbm .
a
pressible side, which is ultimately 12 times as great as in the natural
state of an elastic substance,

when a = b, and which

vature would evidently be ; @ being the distance from the incom-

5. Tueorem. The distance of the point of greatest cur-
vature of a prismatic bcam, from the line of direction of the
force, is twice the versed sine of that arc of the circle of
greatest curvature, of which the extremity is parallel to that of
the beam.

Supposing the curve, into which the beam is bent, to be described
with an equable angular velocity, its fluxion will Le directly as the radius
of curvature, or inversely as a, the distance of the force from the axis of
the beam ; this we may still call a at the point of greatest curvature,
and y elsewhere, the corresponding arc of the circle of curvature being 2z ;

s
2

then the fluxion of the curve will be aT; but this fluxion is to y as the

. - . az sin. =
rahini r 6o the sine of the angle or are z,or T y= — — but

y
‘sim. 2.2 . . he versed si f the arc 2.T »i = aé. and )
— == =r, v being the versed sine of the are 2,3 yy =av, and vy =0
’
T2, b ey a constant quantity . when g -y v o andaa =,
terofomres gy = =2ac, and when y = o, au = 2av.aned a = 20,

K 2
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ScroLiuM. When the force is longitudinal, and the curvature incon-
siderable, the form coincides with the harmonic curve, the curvature
being proportional to the distance from the axis: -and the distance of
the point of indifference from the axis becomes the secant of an arc pro-
portional to the distance from the middle of the column.

6. TreoreM. If a beam is naturally of the form which a
prismatic beam would acquire, if it were slightly bent by a
longitudinal force, calling its depth, b, its length, e, the circum-
ference of a circle of which the diameter is unity, c, the weight
of the modulus of elasticity, m, the natural deviation from the
rectiliear form, d, and a force applied at the extremities of

the axis, f, the total deviation from the rectilinear form will
be a = bbcedm
bbeem —12eef *

The form being originally a harmonic curve, the curvature and length
of the ordinate added at each point by the action of the force will also
be equal to those of a harmonic curve, of which the vertical radius

of curvature must be %, and the basis the length of the beam;

but the vertical ordinate of the harmonic curve is a third propor-
tional to its radius of curvature and that of the figure of sines on

the same basis, which in this case would be -e—, the additional verti-

cal ordinate must therefore be bt ‘W, and this added to the devi-

ation d, must become equal to a, and a =d +“ l2qf, —_5. -‘-72-—“;': =
_ abbeom—12aegf bbecdm : '
d oo ? anda_” g

ScroLiuM. It appears from this formula, that when the other quan-
tities remain unaltered, a varies in proportion to d, and if d =o, the
beam cannot be retained in a state of inflection, while the denomi-
nator of the fraction remains a finite quantity : but when bboem = 12¢¢f, a
becomes infinite, whatever may be the magnitude of d, and the force
will overpower the beam, or will at least cause it to bend so much as to
»
12
= . 8225 gm, which is the force capable of holding the beam in equili-

derange the operation of the forces concerned. In this case f= (?). .

brium in any inconsiderable degree of curvature. Hence the modulus being
known for any substance, we may determine at once the weight which
a given bar nearly straight is capable of supporting. For instance in fir
wood, supposing its height 10,000,000 feet, a bar an inch square and ten
feet long may begin to bend with the weight of a bar of the same thick-
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ness, equal in length to . 8225 X s X 10,000,000 feet, or 571
feet ; that is with a weight of about 120 pounds; neglecting the effect
of the weight of the bar itself. In the same manner the strength of a
bur of any other substance may be determined, either from direct ex-

periments on its flexure, or from the sounds that it produces. Iff=:'

& =.8225m, and § = y/(.8226n) = .907/n; whence, if we know the

furce required to crush a bar or column, we may calculate what must be the
proportion of its length to its depth, in order that it may begin to bend
rather than be crushed. The height of the modulus of elasticity for
iron or steel is about 9,000,000 feet, for wood, from 4,000,000 to
10,000,000, and for stone probably about 5,000,000 ; its weight for a
square inch of iron 80,000,000 pounds, of wood from 1,500,000 to
4,000,000, and of stone about 5,000,000 : and the values of n are in
the two first cases from 200 to 250, and in the third about 2500, and

+/n becomes 15 and 50, and -;, 12.3 and 41.1 respectively, so that a co-
lumn of iron or wood cannot support, without being crushed, a longitu-
dinal force sufficient to bend it, unless its length be greater than 12

times its depth, nor a column of stone, unless its length be greater than
40 times its depth.

7. Tueorex. When a longitudinal force is applied to the

extremities of a straight prismatic beam, at the distance a from
the axis, the deflection of the middle of the beam will be

a.(sec.m(«/(%).;;)—l).

If we suppose the length to be increased until f = (li:—)' r—z’ ore=be
v (i%f)’ the beam might be retained by the force f in the form of a

harmonic curve, of which @ might be an ordinate, und the vertical ordi-
nate would be as much greater than a as the radius is greater than the
st of the arc corresponding to its distance from the origin of the curve,
or as the secant of the arc corresponding to its distance from the
mndille of the curve is greater than the radius, and the excess of this
weant ghove the radius will express the detlection: produced by the
stem of the foree; Tt this arc 15 to the quadrant CT as ¢ to be o/ (l;f)’
Y

stnd 25 therdfure Ulll.ll t v’(——)
"

[
.’}

Sogovivs. Henoo 1t appuars that when the other quantities we
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constant, the deflection varles in t.he simple ratio of a. The radius of

124f. (sec. are J(#) ;)

degree of extension and. compression of the substance may be de-
termined.

, from which the

curvature at the vertex is

8. TueoreM. The form of an elastic bar, fixed at one end,
and bearing a weight at the extremity, becomes ultimately a
cubic parabola, and the depression is § of the versed sine of an
cqual are, in the smallest circle of curvature.

The ordinate of the cubic parabola being ax3, its fluxion is 2ax®z,
and its second fluxion 4axz#, which varies as x the absciss., If the
curvature had been constant, the second fluxion would have been bz,
the first fluxion bx, and the ordinate }bxx ; but as it is hiz— 2z,
the first fluxion is daed — 4L, and the fluent Jdar® — J®, which, when
b =z, becomes b3, instead of §.

9. TueoreM. The weight of the modulus of the elasticity
of a bar is to a weight acting at its extremity only, as four
times the cube of the length to the product of the square of the
depth and the depression.

If the depression be d, the versed sine of an equal arc in the smallest
circle of curvature will be §d, and the radius of curvature ¢ being the
length ; but the radius of curvature is also expressed by 12070 @ being

‘ _ e
here equal to e, therefore & d_d = —7 12¢°f = 3bbdm, and m _de’f‘ If
f be the weight of a portion of the beam of which the length is g, the
height of the modulus will be sz:l .9

ScuorLivM. In an experiment on a bar of iron, mentioned by Mr.
Banks, e was 18 inches, b and d each 1, f 480 pounds, and g about 150
feet : hence the height of the modulus could not have been less than
3,500,000 feet. But d was probably much less than this, as the depres-
sion was only measured at the point of breaking, and m must have been
larger in the same proportion.

10. Tueorem. If an equable bar be fixed horizontally at
one cud, and bent by its own weight, the depression at the ex-
tremity will be half the versed sine of an equal are in the circle
of curvature at the fixed point.
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The strain on each part is here equal to the weight of the portion be-
yond it, acting at the end of a lever of half its length : the curvature will
therefore be as the square of the distance from the extremity. And if
the second fluxion at the vertex be aazz, it will be everywhere (a —x)*
IL = aaké — 2axrr 4 x2dk; the first fluxions of these quantities are
aaxz and aaxz —axti+4 jx*x, and the fluents ja%*, and ja*z* — jax®
+ Pgx*; or when x=a, §a* and }a¢; therefore the depression is in
this case half of the versed sine.

11. Taeorex. The height of the modulus of the elas-
ticity of a bar, fixed at onc end, and depressed by its own
weight, is balf as much more as the fourth power of the length
divided by the product of the square of the depth and the
depression.

The weight of the bar operates as if it were concentrated at the dis-
tance of half the length, or as if it were reduced to one half] acting at

the extremity : we bave therefore ;— for the length of a portion equiva-

lent to the weight, and :‘7 =l"';—'3-d,, whence m ='b% /> and the height
20t .

wbd”

12. TuroreM. The dcpression of the middle of a bar
supported at both ends, produced by its own weight, is five-
sixths of the versed sine of half the equal arc in the circle of
least curvature.

The curvature varies as aa —xxr, and the second fluxion is therefore
npresented by aaxds —axxis, while that of the versed sine is catiz,
the first uxions are aars and aars — Ja*.&, and the fluents atx® and
fatss = x4, or, when r =aq, {a¢, and %, which are in the ratio
of 0 5,

13. Tueorex. The height of the modulus of the elasticity
of a bar, supported at both ends, is %5 of the fourth power of
the length, divided by the product of the depression and the
~juare of the depth.

For the strain at the middle is equal to the effeet of the weight of one

tourth of the har acting on a lever of half the length (312); and the

1 t rvatu tl i - l - nd —: ‘ 1t heigrl
B e “urs I A IS - - — - PR Y] g 4 Hig
- ol cursi othele s i t {3 7] il (Y e heht

<" .
il abstitutue s [



136 EQUILIBRIUM AND STRENGTH OF No. XLVL

SceoLiuM. From an experiment made by Mr. Leslic on a bar in
these circumstances, the height of the modulus of the elasticity of deal
appears to be about 9,328,000 feet. Chladuni’s observations on the
sounds of fir wood, afford very nearly the same result.

14. TueoreM. The weight under which a vertical bar not
fixed at the end, may begin to bend, is to any weight laid on the
middle of the same bar, when supported at the extremities in a
horizontal position, nearly in the ratio of v34%s of the length to
the depression.

For the weight laid on the bar being f, the pressure on each fulcrum is

7, and the length of thelever 3, so that the weight of the modulus

becomes 4—%; but the force capable of keeping the column bent is

(b?c)’ '1%’ or since ¢ =a, %cd-f=-0514§f- The effect of the weight
of the bar on the depression may be separately observed and deducted.

15. THeorEM. The force acting on any point of a uniform
elastic rod, bent a little from the axis, varies as the second
fluxion of the curvature, or as the fourth fluxion of the ordi-
nate.

For if we consider the rod as composed of an infinite number of small
inflexible pieces, united by elastic joints, the strain, produced by the
clasticity of each joint, must be considered as the cause of two effects, &
force tending to press the joint towards its concave side, and a force
half as great as this, urging the remoter extremitics of the pieces in a
contrary direction ; for it is only by external pressures, applied so as to
counteract these three forces, that the picces can be held in equilibrium,
Now when the force, acting against the convex side of cach joint,
is equal to the sum of the forces derived from the flexure of the two
neighbouring joints, the whole will remain in equilibrium’; and this will
be the case whether the curvature be equal throughout, or vary uni-
formly, since in cither case the curvature at any point is equal to the half
sum of the neighbouring curvatures ; and it is only the difference of the
curvature from this half sum, which is as the second fluxion of the curva-
ture, that detenmines the aceelerating force,

16. Derinirion  The stiffness of bodies is measured by
their resistance at an equal lincar deviation from their natural
position
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17. Tueoren. The stiffness of a beam is directly as its
breadth, and as the cube of its depth, and inversely as the cube

of its length.

Since m=%.
Pk varies as ¢, and f as 2, that is, when d is given, as A, and ¥,
and inversely as ¢’

S (Art. 9) and m varies as bk, h being the breadth,

18. Tueorem. The direct cohesive or repulsive strength of
a body is in the joint ratio of its primitive elasticity, of its
toughness, and the magnitude of its section.

Since the force required to produce a given extension is as the exten-
sion, where the elasticity is equal, the force at the instant of breaking is
as the extension which the body will bear without breaking, or as its
toughness. And the force of each particle being equal, the whole force
must be as the number of the particles, or as the section.

SchortuM. Though most natural substances appear in their intimate
constitation to be perfectly elastic, yet it often happens that their tough-
ness with respect to extension and compression differs very materially,
In general, bodies are said to bave less toughness in resisting extension
than compression. .

19. Tueoren. The transverse strength of a beam is directly
as the breadth and as the square of the depth, and inversely as
the length.

The strength is limited by the extension or compression which the

sulmtance will bear without failing ; the curvature at the instant of frac-
ture ust therefore be inversely as the depth, and the radius of curva-

bbm
ture as the depth, or — as b, consequently bm must be as af, and f

12af
bm . bbh
4y —, OF, SInce m is as bh, as —.
] a
ScuorieM. I one of the surfaces of a beam were incompressible, and
tle- cobisive force of all its strata collected in the other, its strengeth
wearhl b wn times as great as e the nataral state; for the radius of cur-

I .
vatwe woukl e il which could not be less than twice as great as in
o,

the nataal state, becass the strata would e twice as much extended,
with the same cuvatuse, s when the neutral pont 1= the axis; and
¢ ookl then e st s @ cicat.
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20. DEFinitTioN. The resilience of a beam may be consi-
dered as proportional to the height from which a given body
must fall to break it.

* 21. TueoreM. The resilience of prismatic beams is simply
ag their bulk.

The space through which the force or stiffness of a beant acts, in ge-
nerating or destroying motion, is determined by the curvature that it
will bear without breaking ; and this curvature is inversely as the depth ;
consequently the depression will be as the square of the length directly,
and as the depth inversely : but the force in similar parts of the spaces
to be described is every where as the strength, or as the square of the
depth directly, and as the length inversely : therefore the joint ratio of
the spaces and the forces is the ratio of the products of the length by
the depth ; but this ratio is that of the squares of the velocities generated
or destroyed, or of the heights from which a body must fall to acquire
these velocities. And if the breadth vary, the force will obviously vary
in the same ratio ; thercfore the resilience will be in the joint ratio of the
length, breadth, and depth,

22. TuEoreM. The stiffest beam that can be cut out of a
given cylinder is that of which the depth is to the breadth as the
square root of 3 to 1, and the strongest as the square root of
2 to 1; but the most resilient will be that which has its depth
and breadth equal.

Let the diameter or diagonal be a, and the breadth 2; then the depth

being 4/ (aa — xx), the stiffbess is (aa—.m') , and the strength
aax —x®, which must be maximums; and (ea—zx)*xr must be a
maximum ; so that 3(aa —xx)e. (—21‘:&) . 224 (ua—xx)*(222) = o,
ad—zx =3xx ; and the squares of the breadth and depth are as 1 to 3;
also aat = 3z, x = 4/ }a, and the depth 4/ $a, for the strongest form,
It is evident that the bulk, and consequently the resilience, will be
greatest when the depth and breadth are equal.

23. Tueorem. Supposing a tube of evanescent thickness to
be expanded into a similar tube of greater diameter, but of
equal length, the quantity of matter remaining the same, the
strength will be increased in the ratio of the diameter, and the
stnﬂ'uees in the ratio of the square of the diameter, but the resi-
lience will remain unaltered.
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For the quantity of matter remaining the same, its action- is in both
cases simply as its distance from the fulcrum, or from the axis of motion,
and this distance is simply as the diameter, since the section remains
similar in all its parts: the tension at a given angular flexure being also
increased with the distance, the stiffness will be as the square of the dis-
tance, and the force in similar parts of the space described being always
inversely as the space, the square of the velocity produced or destroyed
will remain unaltered.

ScroriuM. When a beam of finite thickness s made hollow, retain-
ing the same quantity of matter, the strength is increased in a ratio
somewhat greater than that of the diameter, because the tension of the
internal fibres at the instant of breaking is increased.

24. TuroreM. The stiffness of a cylinder is to that of
its circumscribing prism as three times the bulk of the cylinder
to four times that of the prism.

The force of each stratum of the cylinder may be considered as acting
on a lever of which the length is equal to its distance z from the axis :
for although there is no fixed fulcrum at the axis, yet the whole force is
cxactly the same as if such a fulcrum were placed there, since the oppo-
site actions of the opposite parts would remove all pressure from the ful-
crum. The tension of cach stratum being also as the distance x, and
the breadth being called 2y, the fluxion of the force on either side of the
axis will be 2r%., while that of the force of the prism is 22%%, and its
tluent $r3.  But the fluent of 2%, or 2 y/ (1 —axx)2*s, calling the
rvlius wnity, is §(z—y3r), 2 being the area of the portion of the
sction included between the stratum and the axis, of which the fluxion
15 yr; for the fluxion of z—=y*r is y&—y*&—3y'ry = ya’'s=3y'r.
(%‘) =yr'r43ys*s = 4y8 ; and when x =1, and y =o, the fluent
twoomes 32, while the force of the prism is expressed by 4.

ScuoriuM, It is obvious that the strength and resilience are in this
cise in the same ratio as the stiffiess. The strength of a tube may be
faund by deducting from the strength of the whole cylinder that of the
yart removed, reduced in the ratio of the diameters.

25. Tucoren. If a column, subjected to u longitudinal
force, be cut out of a plank or slab of equable depth, in order
that the extension and compression of the surfaces may be ini-
tially every where equal, its outline must be a circular are.

Newintng the distance of the nouteal pont liom the axis, the curva
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ture must be constant, in order that the tension of the superficial fibres
may be equal ; and the breadth must be as the distance of the line of
application of the force; that is, as the ordinate of a circular arc, or,
when the curvature is small, it must be equal to the ordinate of another
circular arc, of which the chord is equal to the axis.

26. Tueorem. If a column be cut out of a plank of equable
breadth, and the outline limiting its depth be composed of two
triangles, joined at their bases, the tension of the surfaces
produced by a longitudinal force will be every where equal,
when the radius of curvature at the middle becomes equal to
half the length of the column ; and in this case the curve will be
a cycloid. :

For in the cycloid, the radius of curvature varies as the distnnoe, in
the curve, from its origin, or as the square root of the ordinate-a, and if
the depth b be as this dista.nce, a will varyas bb, and the curvature,

which is proportional to ;, =, will be always as » and the tension will

be equable throughout. In every cycloid the radxus of curvature at t.he
middle point is half of the length.

ScnoLiuM. When the curvature at the middle differs from that
of the cycloid, the figure of the column becomes of more difficult inves-
tigation. It may however be delineated mechanically, making both the
depth of the column and its radius of curvature proportional always to
va. If the breadth of the column vary in the same proportion as the
depth, they must both be every where as the cube root of a.
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No. XLVIIL

SOME PROPOSITIONS ON

WAVES AND SOUND.

Partly from Dr. Young’s Elementary Illustrations of the Celestial Mechanics of
Laplace, and partly from the Mathematical Elements of Natural Philosophy in
the second volume of his Lectures, p. 63.

1. Tueoren. When the surface of an incompressible fluid,
contained in a narrow prismatic canal, is elevated or depressed
a little at any part above the gencral level ; if we suppose a
point to move in the surface each way, with a velocity equal
to that of a heavy body falling through half m the depth of
the fluid, the surface of the fluid, at the part first affected,
will always be in a right line between the two movcable
points.® Cel. Mec, No. 378, p. 318.

The particles constituting any column of the fluid, extending across
the canal, are actaated by two forces, derived from the hydrostatic pres-
sures of the columns on each side, these pressures being supposed to ex-
tend to the bottom of the canal, with an intensity regulated only by the
height of the columns themselves ; and this supposition would be either
perfectly or very nearly true, if the particles of the fluid werec infinitely
elastic, that is, abeolutely incompressible ; and if the fluidity were at
the same time so perfect, that no particle of the fluid should be affected
by any pressure not tending directly towards it. A distinguished ma-
thematician of the present day appears indeed to have assumed, that the
jeeasure is transmitted downwards with a velocity determined by the
depth, and related to the velocity of the horizontal transmission, if not
ibntical with it: but it seems sufficiently obvious, that if the canal be
suppneed incompresaible, the pressure must descend in it, as it confess-

® Thus propeition is demonstratel upon the same principles, but without the nid
of symbols, in No, 395, p. 63, of the second volume of the Lectures,  Note by the
Edstor,
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edly would do in an organ pipe, with a velocity dependent only on the
intimate clasticity of the medium, which in this proposition is supposed
infinite.*

Now the difference of the forces on each side of the thin transverse
section of the canal, constituting a partial pressure, is the immediate
cause of the horizontal motion; and the vertical motion is the effect of
the modification of the horizontal motion : and the diffcrence of the pres-
sures is every where to the weight of the column or section, or of any of
its parts, as the difference of the heights to the thickness of the column,
or as the fluxion of the height y to that of the horizontal length of the
canal . Hence, if the weight of any particle be called g, the hori-

zontal force acting on it will be 32 Such therefore is the force

ix 2.
acting horizontally on any elementary column: but the elongation or ab-
breviation of the column depends on the difference of the velocities, with
which its two transverse surfaces are made to advance, and this elevation
or depression of the upper surface is therefore to the whole height, as
the variation of the fluxion of the length, or thickness, produced by the
operation of the force, is to the whole fluxion of the length; that is, éy

is to y as ddx to d.1:, or as dnpz to bx. But the force which produces the
change being ay dz g = (-i—d! ¢, making dx constant, it may be supposed
to be increased, with rcference to the acceleration of the upper surface of
the fluid, in the ratio of the synchronous variations édx and &y, or that
of dz to ¥, and it will then become :-: . (-m—yg = ?jgy, which will be the
measure of the acceleration of the surface, and the surface will ascend or
descend precisely as if immediately subjected to the operation of such a
force. 'We may therefore inquire what must be the velocity of a body
moving along the curved surface, or what must be the horizontal velo-

city of a similar surface moving along through the body, in order

that the vertical motion should represent the effect of the force gy

Now in the common expression of the magnitude of a force actmg in the
_ddy ddy ddy

direction of y, we say f = 3> We must therefore make =g

or 3= =99 and d—f =/(gy): conscquently if  flow with the constant

velocity v = d( = #/(gy), the second fluxion of y will always represent

the actual acceleration of the surface of the fluid, the part of the curve cor-
responding to the time ¢ always representing the actual position of the

¢ The mathematician referred to is M. Poisson.—Note by the Editor.



No. XLVIL WAVES AND SOUND. 143

particle, as well as its motion. But 4/ (gy) is the velocity acquired
by a bhody in falling through } y, since in general +* =2gs, and
v=4/ (298), or =4/ (2g%). In this simple manner we attain a strict
demonstration, on the premised supposition respecting the nature of
the fluid, that the velocity of the surface will be represented by that of
the surface of a wave advancing with the horizontal velocity thus deter-
mined, or, in other words, that the wave will actually advance with that
velocity.

But in this form the solution is limited to the case of a wave already
in progress. It may, however, readily be extended to all possible cases.
For since the actions of any two or more forces are always expressed by
the addition or subtraction of the results produced, in any given time,
by their single operations, it may casily be understood that any two or
more minute impressions may be propagated in a similar manner
through the canal, without impeding each other ; the inclination of the
surface which is the original cause of the acting force, being the joint
effect of the inclinations produced by the separate impressions, and pro-
ducing singly the same force, as would have resulted from the combina-
tion of the two separate inclinations; and the clevation or depression
becoming always the sum or difference of those which belong to the
separate agitations. If then we suppose two similar impulses, waves,
or scries of waves, to meet each other in directions precisely opposite;
they will still pursue their course: and at the instant when they meet
in such a manner as to destroy completely each other’s horizontal and
vertical motions, the elevation and depression of each series will coin-
cide and be redoubled, and the fluid will be quiescent, with an undu-
lated surfice: bLut in the next instant the two series will proceed
uninterrupted, as before: conscquently the fluid being supposed to be
mitially in the same state, its progressive changes will be represented
Ly the effects of the two scries of waves meeting each other, and the
jlace of cach point will be determined by the middle between the two
places which it would have held by the separate effects of the two serics,
that is by the mean between the elevation or depression of the two
pints supposed in the proposition.

CoroLLARY 1. The points, in which the similar parts of the two
oppemite series of waves continue to meet, will always be free from hori-
antal mation ; hence it follows that a solid obstacle in a vertical direc-
tion might be interposed without altering the phenomenon : and conse-
qrently that any fixed obstacle mecting the waves would produce
previwly the same offect on the subsequent state of cither series, as is
preeiuced by the opposition of a similar ~eries, and would reflect it in
s torm sinubar o that of the oppesite series, which would have travelled
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over it, if it had originated from a primitive cause of motion on the other
side of the obstacle.

SchoLiuyM. It will appear, by considering the combination of the
horizontal with the vertical motion, that cach particle of the surface
will describe an oval figure, which it will be simplest to suppose
an ellipsis ; the motion in the upper part of the orbit being direct
with regard to the progress of the wave, and in the lower part retro-
grade: and the orbit will be of the same form and magnitude for
each particle of the surface, when the canal is supposed to be pris-
matic.*

® The following Scholium is added to the demonstration of this proposition in the
second volume of the Lectures :—

ScHoLIUM. The limited elasticity of liquids actually existing produces some vari-
ations in the phenomena of waves, which have not yet been investigated; but its
effect may be in some degree estimated by approximation. For a finite time is actu-
ally required in order for the propagation of any effect to the parts of the fluid situ-
ated at any given depth below the surface, and for the return of the impulse or
pressure to the superficial parts: so that the summit of every wave must have
travelled through a certain portion of its track before the neighbouring parts of the faid
can have partaken in the whole effects which its pressure would produce by means of
the displacement of the lower part of the fluid. This cause probably co-operates with
the cohesion of the liquid in rounding off any sharp angles which may originally have
existed ; it limits the effect that an increasc of depth can produce in the velocity of
the transmission of waves of a finite magnitude, and diminishes the velocity of all
waves the more as the depth approaches more to this limit. If the surface was
originally in the form of the harmonic curve, it may be shown that the force acting
at any time on a given point in consequence of the sum of the results of the forces
derived from the effect of a given portion of a wave which has already passed by, will
still follow the law of the same curve: but the force will be diminished in the ratio
of the arc corresponding to half the space described by the wave while the impulse
returns from the bottom, to its sine, the whole distance of the ware being considered
as the circumference ; and the velocity will be diminished in the sub-duplicate ratio;
but the arc which, when diminished in the subduplicate ratio that it bears to the
sine, is the greatest, is that of which the length is equal to the tangent of its excess
above a right angle, or an arc of about 702, its sine is .94 and its length 2.8, the
subduplicate ratio that of 1 to .57, and the velocity will be so much less than that
which is due to the height: but with this velocity the wave will describe a portion
equal to 3|} of its breadth, while the cffect descends and reascends to the depth con-
cerned ; and supposing the velocity with which the impulse is transmitted through
the fluid to be equal to that which is acquired by a body falling through a space
equal to §m, and calling the depth A, and the breadth of the wave a, while Ji}a is

described by v, 2A is described by that which is due to &m, or by b o/ (g) ; and v

being 575 / (;),m 575/ ('-;)zo flia, sois b (’;3) to 24, and 1.14A = 2jja . /m,

1
whence A = .5(a%m) 3. For water, according to Mr, Canton’s experiments, m is not
more than 750,000 fect, but we may venture to call it a million; then if a, the
breadth of the wave, were 1 foot, A would be 50, and the velocity nearly 23 fert in a
second, If @ were 1000 feet, A would be 5000 ; and the addition of a greater depth
could not increase the velocity. Where the depth is given, the correction may be
made in a similar manner. For A being in this case given, we must find the arc which
is to its sine in the duplicate ratio of the velocity due to the height to the diminished
velocity, represented by that are, while that of the impulse propagated in the mediuwn
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2. Tueoren. The divergence of a wave makes no sen-
sible difference in the velocity of its propagation, and its height
will vary as the square root of the distance from the centre.
Cel. Mec., No. 379.

The immediate horizontal force is the same for a diverging wave as

for a prismatic canal, its measure being always g% g, as well for the

parts lying without the sides of a supposed prismatic canal, as for the
parts cootained within it, the inclination of the surface being the same
without as within those limits, and the fluxion of the height being in
the same proportion to that of the length z, notwithstanding that the
peeseure in ooe direction is derived, for the extreme parts, from the sur-
face of the collateral portion of the wave : consequently the force, as

refrred to the surface of the fluid, will still be expressed by ‘—’g‘ gy. It

will, however, be modified by the depression attending a progressive
motion, necessary for preserving the continuity of the fluid, which must
otmwously be such that —3y may be to 3z, the progressive velocity, as y

to r, and 3y = -3z % : and the accelerative force :T‘Z g, considered with
regard to its effect at the surface, will be modified in the same proportion
as the velocity, so that instead of :—ig, it will become —g—ig %: -

g‘ gy. oousequently the joint acceleration of the surface will be

%_%)g‘y Now?}: 2%, which is the reciprocal of the

dameter of the circle of curvature, and :T': is the reciprocal of x :—;,
the height of the intersection of the vertical line passing through the
camtre of divergence with the perpendicular to the surface of the wave,
whuch will be very great in comparison with the diameter of curvature,
when the distance from the centre becomes considerable: and the second
jart of the expression will become a small disturbing force, depending
en the tangent of the inclination of the surface, which represents
the fluent of the curvature, or of the accelerating force, and being
thenfore proportional to the velocity : so that like the resistance of a
produlum proportional to the velocity, it will not sensibly affect the
whole period of the alternate motion, or the propagation of the wave

» espressed by twice the depth.  Thus if A were 8 feet, and a 1 foot, the velocity
brmag v, the aru must be to its sine as 256 to rr, and v to H860 us twice the arc to
twwe the dejth and the arc 4§, or in degrees .51c; but this arc is somewhat more
than #2, and excreds sts sine o bittle thut the velocity i scarcely diminished one
thoamandth by the comprensibnlity of the water.  The friction and tenacity of the
water mast also tend in seme degree to lessen the velocity of the waves.

VOL. 11 L
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depending onit. We obtain the law of the diminution of the height of
the waves in diverging, from the principle of the preservation of
impetus, since the mass affected at once by the similar velocities
increases directly as the distance from the centre x, when the depth is
equable, consequently all the velocities concerned must decrease as the
square root of x, in order that the sum of the masses, multiplied by the
squares of the velocities, may remain constant. There will always he a
continual but insensible reflection, which will preserve the centre of gra-
vity immoveable, though it consumes no considerable part of the impetus ;
except at the very origin of the wave, where there seems to be some-
thing like a vibratory motion from this reflection, for a short space, at
the beginning of the motion.

ScrouiuM. It is obvious that the surface of a wave so diminishing
cannot be supposed to glide on unaltered, but the demonstration shows
that the motion of each point of the surface is the same as that of a sur-
face, affected by a series of equal waves, of the magnitude of the actual
wave at the given point, which is the condition supposed in the compa-
rison of the force with the curvature.

3. TreoreM. All minute impulses are conveyed through
a homogeneous elastic medium with a uniform velocity, equal
to that which a heavy body would acquire, by falling through
half M, the height of the medium causing the pressure. Cel.
Mec., No. 380 ; Lectures, vol. ii., No. 400.

In this case we have to call the density y, instead of the height of an
incompressible fluid in Theorem 1, p. 142, and to imagine the surface of
the wave to be that of a curve representing the density by its ordinate y,
which is equal to the height of a uniform column of the medium capable
of producing the pressure, or in other words, to the height of the

modulus of elasticity of the medium: then:—_-‘: g will be the direct

accelerating force, and %%—'Z gy the acccleration of the ordinate of the

curve of density, since herc again the variation of density dy is to y,
as ddr to dx: and the same conclusion is inferred, respecting the
velocity with which the curve of densities must advance, in order that
it may represent the instantancous change at each point, and conse-
quently for all the points in succession.

4. Tueorem. Every small change of form is propagated
along an clastic chord, with a velocity equal to that which is
due to half the length M, of a portion of the chord, of which
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the weight is equal to the force producing the tension, and is
reflected from the extremities in an opposite direction. Cel.
Mec,, No. 381 ; Lectures, vol. ii., No. 397, sch.

This propnsition, though not belonging to the motions of fluids, is in-
wrtia]l bere to complete the analogy between the height of a liquid, the
madulos of elasticity of an elastic medium, and the modulus of tension
of a vibrating chord. The force, impelling any small portion of the chord
wwands the quiescent position, or axis, is obviously expressed by the
dugnnal of the elementary parallelogram, formed by its extreme tan-
o, that is the line intercepted between the intersection of those tan-
onts and a line equal and parallel to the second drawn from the
extremity of the first, or in other words, by the second fluxion of the
«ahipate, when the tangent represents the first fluxion of the axis, the
ane being always supposed infinitely near to the axis, and in general
the frce will be to the tension as the second diflerence AAy to the first
ditkrence 42 : but the tension is to the weight of the element Az as M

t+ Ar, consequently the tension of ax is i g, and the accelerative force

'%’ . -;-’ = %’lg = g-:%ug, which we may make = =g%, and we
<iall have v =4/ (gu), as v=4/(gy) in Theorem 1; and the velocity
w:il ¢ that which is due to half the height M.

Thr rfbction at the extremitics of the chord may be represented by
-5 i.t» atinez the initial figare, and repeating it in an inverted position be-
bea tis alsciss: then taking, in the absciss, cach way, a distance puopor-
t. <.t 1o the time; and the half sum of the corresponding ordinates wall
wteate the place of the point at the expiration of that time.” The chord
=1 thu- reprsent a portion of the surface of a liquid agitated by a
wtien of waves: and on the other hand a wave reflectid backwards and
1 rwands within a prismatic canal of its own length, abruptly terminated
at «arh end, will exhibit a vibration precisely resembling that of an
sizmtac chonl. It may be inferred from the consideration of the motion
4 a chwnl 80 continued, that the point corresponding to the end of the
te.mitive chonl will always remain at rest; whence it follows that the
e s oof the chond, terminated by such a fixed point, must be the same
as .f it were continued in the manner described, the reasoning being the
ans: as in the case of the retlection of a wave.

5. Turorex. When a uniform and perfecetly flexible chord,
extemded by agiven weight, is inflected into any form, ditfering
little from a straight line, and then suffered to vibrate, it returns
b it~ primitive ~tate in the time which would be accupied by a

L2
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heavy body in falling through a height which is to the length of
the chord as twice the weight of the chord to the tension; and
the intermediate positions of each point may be found by deline-
ating the initial figure, and repeating it in an inverted position
below the absciss, then taking. in the absciss, each way, a dis-
tance proportionate to the time, and the half sum of the
corresponding ordinates will indicate the place of the point at
the expiration of that time. Lectures, vol. ii.,, No. 396.

We may first suppose the initial figure of the chord to be a harmonic
curve: then the force impelling each particle will be proportional to its
distance from the quiescent position, or the base of the curve. For the
force acting on any element 2’ is to the whole force of tension p, as the
element z' to the radius of curvature r, therefore the force is in-
versely as the radius of curvature, or directly as the curvature, that is,
in this case, as the second fluxion of the ordinate; but the second
fluxion of the ordinate of the harmonic curve is proportional to the ordi-
nate itself; for the fluxion of the sine is as the cosine, and its fluxion
again as the sine: the force being therefore always as the distance
from a certain point, as in the cycloidal pendulum, the vibrations will be
iro:hronous, and the ordinates will be proportionally diminished, so that
the figure will be always a harmonic curve. Now calling the length of
the chord a, and the greatest ordinate y, the ordinate of the figure
of sines being to the length as the diameter of a circle to its circumfe-

a . . .
rence, or =-—, the radius of curvature of the harmonic curve will be

:;, and the force acting on the element 2’ will be “:: i ; but the

weight of the chord being g, that of 2’ is q%', and the force is to the
weight as ? to ¢, or as % to 1: therefore the time of vibra-

tion will be to that of-a pendulum of the length y as 1 to 4/ (-i-.:%’;)
and to that of a pendulum of the length a in a ratio as much less as
Ay is less than 4/a,0ras 1 toc. J—:’:. But the time of the vibration

of a pendulum of the length a is to the time in which a body would fall
through half a, as ¢ to 1, consequently a single vibration of the chord

will be performed in the time of falling through g.;%, and a double vibra-

tion in the time of falling through 2a. 7. Now the element 2’, moving

according to the law of the cycloidal pendulum, describes spaces which are
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the versed sines of arcs increasing equably, and the difference of
the sine at any point from the half sum of the sines of two equidifferent
arcs is in a constant ratio to the versed sine of the difference, therefore,
by taking the half sum of two equidistant ordinates, we find the space
remaining to be described, after a time proportionate to the absciss. If
the base be divided into two equal parts, and a harmonic curve
be described on different sides of each part, the same demonstration is
applicable to both parts, as if they were two separate chords: since the
middle point will always be retained at rest by equal and opposite
forces : and nothing prevents us from combining this compound vibration
with the original one, since, by adding together the ordinates, we
increase or diminish the fluxions and increments, in proportion to the
spaces that are to be described, and the same construction of two equi-
distant ordinates, will determine the motion of each part. Such a com-
pound figure may be made to pass through any two points at pleasure,
and it may easily be conceived, that by subdividing the chord still fur-
ther, and multiplying the subordinate curves, we may accommodate it
to any greater number of points, so as to approximate infinitely near to
any given figure; by which mecans the proposition is extended to all
possible forms.

SceouiuM. If the initial figure consist of several equal portions
crossing the axis, the chord will continue to vibrate like the same num-
ber of separate chords; and it is sometimes necessary to consider such
subordinate vibrations as compounded with a general one. It usually
happens also that the vibration deviates from its plane, and becomes a
rutation, which is often exceedingly complicated, and may be considered
as composed of various vibrations in different planes.

6. Toeoren. The chord and its tension remaining the
same, the time of vibration is as the length ; and if the tension
be changed, the frequency will be as its square root: the
time also varies as the square root of the weight of the
chord. Lectures, vol. ii., No. 397.

It has been shown, that the time varies in the subduplicate ratio of
the furce, that is, of the tension directly, and of the weight inversely ;
and since the weight varies as the length, the equivalent space will vary
as the square of the length, and the time of describing it simply as the
lengrth,

ScHoLitM. The properties of vibrating chords have been demon-
stratiad in a more direct and general manner by means of a branch of the
fluxionary calculus which has been called the method of variations, and
which s employad 10 comparing the changes of the propertics of a
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curve existing at once in its different parts, with the variations which it
undergoes in successive portions of time from an alteration of its form.
An example of this mode of calculation has already been given in the inves-
tigation of the motions of waves (Theorem 1), and it may be applied with
equal simplicity to the vibrations of chords, and to the propagation of
sound, notwithstanding the intricacy and prolixity with which it has been
always hitherto treated. It may be shown that every small change of
form is propagated along an extended chord with a velocity equal to
that of a heavy body falling through a height equal to half the length of
a portion of the chord, of which the weight is equivalent to a force pro-
ducing the tension, aud which may be called the modulus of the tension ;
and that the change is continually reflected when it arrives at the extre-
mities of the chord ; and from this proposition all the properties of vi-
brating chords may be immediately deduced.

For the force, acting on any small portion of the chord, being to
the tension as its length to the radius of curvature, and its weight being
to the tension as its length is to the modulus of tension, the force is to
the weight as the length of the modulus to the radius, By this force the
whole portion is initially impelled, since the change of curvature in its
immediate neighbourhood is inconsiderable with respect to the whole:
and it will describe a space equal to its versed sine, which is to the arc
as the arc to the diameter, in the time in which a body falling by the
force of gravity would describe a space as much less, as the modulus of
tension is greater than the radius, that is, a space which is to the arc as
the arc to twice the modulus; aud if the time be increased in the ratio
of the arc to the modulus, the space described by the falling body will
be increased in the duplicate ratio, and will become equal to half the mo-
dulus : If therefore a point move in the original curve with such a velo-
city as to describe the arc, while its versed sine is described by the
motion of the chord, it would describe the length of the modulus while
a heavy body would descend through half that length, and its velocity
will therefore be equal to that which is acquired by a body falling
through half the length : and supposing a point to move each way with
such a velocity, the successive places of the given point of the chord
will be initially in a straight line between these moving points, The
place of the given point will also remain in a straight line between the
two moving points as long as the motion continues.  For the figure of the
curve being initially changed in a small degree according to this law,
each of the points of the chord will be found in a situation which is de-
termined by it, and its motion will be continued in consequence of the
inertia of the chord, and will receive an additional velocity from the
effect of the new curvature.  The space described in the first instant
being equal to the mean of the versed sines of the arcs included by the
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two moveable points, the velocity, as well as the second fluxion of the
versed sine, may be represented by twice that mean: the increment of
this velocity in the next succeeding position of the curve will be repre-
sented by the new mean of the versed sines, which is always half of the
mean of the second fluxions of the ordinates on each side; for the extre-
mities of the new elementary arcs being determined by the bisections of
two equal chords removed to the distance of the arc on each side, the
venied sine of each is half of the excess of the increment on one side
above the increment adjoining to the corresponding one on the other side,
and the sum of the versed sines is therefore half the sum of the dif-
ferences of the increments from the contiguous increments on the same
side, consequently the fluxion, or rather the variation of the velocity,
which is represented by twice the mean versed sine, is equal to the half
sum of the second fluxions of the original curve at the parts in which
the moveable points are found, and the second fluxion or variation of
the space, which is as the variation of the velocity, is equal to the mean
of the second fluxions of the ordinates; therefore the space described is
always equal to the diminution of the mean of the ordinates. And the
same mode of reasoning may be extended through the whole curve, If
the initial figure be such that two of its contiguous portions, lying on
opposite sides of the abmsciss, are similar to cach other, and placed in an
inverted position, it is obvious that the point in which they cross the
axis must remain at rest, consequently its place may be supplied by a
fixed point, and cither portion of the curve will continue its motion,
when vibrating separately, in the same manner as if the chord were pro-
lonzed without end by a repetition of similar portions, of which the alter-
uate ones are in an inverted position.

7. Treorem. WWhen a prismatic elastic rod is fixed at one
end. its vibrations are performed in the same time with those of
-97078¢

ddh
d the depth, and 4 the height of the modulus of elasticity :
also if n denote the number of complete vibrations in a second,

a pendulum of which the length is » { being the length,

the measures being expressed in feet, £ will be 1.1907 %—;

and if a prismatic rod be loosely supported at two points ouly,

0239764

the length of the synchronous pendulum will be T and

Ao 02040 50 or P i this case, for a eyldrical
( . » 'l‘l". or ‘3"‘1‘ 3 Il 1 Ha e, or a ‘) nmdarica

2utle

real of which o is the diamcter, b = 2 5 the time of sibra-
alddy
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tion being to that of the circumscribing prismatic rod as 2 to
the square root of 3. Lectures, vol. ii., p. 84.

We must suppose the form of the curve, in which the rod vibrates,
to be such, that all its points may perform their vibrations in a similar
manner, and arrive at the line of rest at the same time; on this supposi-
tion we may determine the time in which the rod is capable of vibrating ;
and if the time of vibration is the same in all cases, the determination
will hold good in all; if not, the problem is not capable of a general
resolution ; but there appears to be little or no difference in the simple
sounds excited in various manners, this variety arising principally from
a combination of secondary sounds. The form of the curve must there-
fore be such, that the fourth fluxion of the ordinate may be proportional
to the ordinate itself; its equation may be found either by means of
logarithmic and angular measures, or more simply by an infinite series.

The conditions of the vibration must determine the value of the co-
efficients : supposing the loose extremity to be the origin of the curve,
the curvature and its fluxion must begin from nothing : for the curva-
ture at the end cannot be finite, nor can its fluxion be finite, since in
these cases, an infinite force, or a finite force applied to an infinitely small
portion of the rod, would be required, and the force could not be pro-
portional to the ordinate ; the initial ordinate must also be independent
of the absciss ; in the case of a rod fixed at the end, the ordinate and its
fluxion must both vanish at the fixed point; and in the case of a rod not
fixed, the second and third fluxions of the ordinate must also vanish at
the remoter end, and the centre of gravity of the curve must remain in
the quiescent line, the whole area, considered as belonging to either side
of the basis, becoming equal to nothing ; a condition which will be found
identical with that of the third fluxion vanishing at the remoter end.

The series for a curve, in which the fourth fluxion of the ordinate is to

be as the ordinate, can only be of this form, y=a 4 2—:5:—‘—‘4.
btas® beas® das® . bdas®
23456781'+ +T +2345l'+2 9p+ L N

+.. + a7 tl ————+ ..., for the fourth fluxion of this expression,

divided by b, is of the same form with the expression iteelf; and the
number of terms allows it to fulfil all the conditions that may be re-
quired. In both the cases here proposed, the co-efficients d and ¢
vanish, because the second and third fluxions are initially evanescent,

. bast btas® bas®
and the equation becomes y = @ + ~—r+s—s+gEm t -
cax bcax® bicax® = Bcar?

+T+3 s taep T ¥ ooc [ the first case, when z =],
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b »
«--l,y=o,and@=o,wbeneel+ —+i s 8+m+"'+
e [ 3 [ »

c 4 . =0, and

it stint z—.s+m+s—..u +...+
be be e
c+ i tg sttt =% therefore —c¢=

[ [ »
1+ : 4+z..s+2..|a+ )

and =
[ [ i
‘+: s'*'z.o"'s st
T R T I
2.3 737 b’a..ll . Hence, by multiplying the nume-

»
l+:4+2 steoet-
ratir of each fraction by the denominator of the other, and arranging
tif pmduch aceording to the powers of b, we obtain the equation 1 —

— '+ a..s -5 l’b'-i-. .. =0, which has an infinite number of

n-»u. the firt two being b = 12.3623, and b =489.4. In a similar
manner we obtain, for the second case, making the second fluxion of y,
am} cither its third fluxion, or the area, vanish when z =1, the equation
;l'—.— ?.‘_—864--3.%;0‘ i 16l':'+ ...=0; and of this the first
twe mots are b = 500.5 and b =3803. From these values of b, those of
¢ may be readily found ; and for each value after the first, the rod has
an adkditional quiescent point.

In onler w determine the time of vibration, we must compare the
froe acting on a particle 2’ at the end of the rod with its weight. The

DY FN ‘:‘:‘% (supra, p. 130, Theorem 4), a being equal to jx, r to
:':-; (the chord of the circle of curvature), and b being the depth, which

w. mav here call d: but the weight of the particle =’ is =z, and

h
| dr . "
the: furce 13 to that of gravity as :_,h d—l-z is to unity. Now
:‘: = SF for, when x is evanescent, the subscquent terms are

nconsulerable in comparison with this, and the force is E':%l‘é, the space

t: be descnbed being a; and if the space became &—lx, and the force

esqual to that of gravity, the vibration would be performed in the same
tune ; this is therefore the length of the synchronous pendulum; that

L9707

1, for the fulul.uncnul sound, in the first case - PR and i the »se-

comd . 0239786 m.
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A pendulum, of which the length is '9707_1‘ feet, makes = J( 9"7 -

39.13
2 )—n double vi-

brations, such as are considered in the estlmat.lon of musical sounds.
Hence h =1.1907 (”—g ).. And in the same manner, for a rod. loosely

39 13

) vibrations in a second, and % t"/ ( 9707 °

supported at two points, h =.02941 (-"—‘l; )..

When the rod is loosely fixed at both ends, the figure coincides with
the harmonic curve, and the length of the equivalent pendulum is

clzl';l’ ¢ being 3.1416, and c*, or b, 97.41.

If a prismatic bar supported at the extremities, be depressed by a
weight equal to a portion of itself of which the length is gl, the depres-

sion being e, & will be = 4dd , and when A _T,n 8.5%—, e being ex-
pressed in feet. The weight under which the bar may begin to
bend (supra, p. 132, Theorem 6) will be equal to that of a portion of
which the length is .0242n°,

The stiffness of a cylinder being to that of its circumscribing prism as
threc times its mass to four times that of the prism, the relative force
will be 4 as great as in the prism, and the time will be increased in the
subduplicate ratio, or as 1 to .866. If a cylinder be compared with a
prism of the same length and weight, its vibrations will be less frequent
in the ratio of 300 to 307, or nearly of 43 to 44.

The second values of b show the proportion of the first harmonic or
secondary sounds of the rods, the length of the synchronous pendulum
being diminished in the ratios of 1 to 89.59,and 1 to 7.6, and the times
of vibration in the ratios of 1 to 6.292, and of 1 to 2.757.

ScroLiuM. All these results are amply confirmed by experiment,
and they afford an easy method of comparing the elasticity of various
substances. In a tuning fork of steel, I was 2.8 inches, d .125, and
n =512, hence & is about 8 530 000 feet. In a plate of brass, held
loosely about one fifth of its length from one end, I was 6.2 inches,
d=.072, and n» =273, whence A =4 940 000; in a wire of inferior
brass, I being 20 inches, d .225, and n = 74, k appears to be 4 700 000,
A plate of crown glass, 6.2 inches long and .05 thick, produced a sound
consisting of 284 vibrations in a second, whence A =9 610 000 feet.
A box scale .012 f. thick, and 1.01 f. long, gave 154 vibrations,
hence A =5 050 000 fect. When these substances were held in the
middle, the note becanie higher by an octave and somewhat more than
a fowrth. Riceati found the diflerence between the clasticitics of steel
and brass somewhat greater than this. For ice,  appeared to be about
850 000.
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Two small rods of deal, one foot in length, produced sotinds; consist-
ing of 270 and 384 vibrations in a second ; their weights were 153 and
127 grains respectively : hence the formula .0242n™F gives nearly 35
and 65 pounds for the force under which they would bend; the experi-
ment, which was made somewhat hastily, gave 36 and 50.

8. DeriNiTION. A sound, of which the number of vibra-
tions in a second is any integer power of 2, is denoted in music
by the letter c. Lectures, vol. ii., p. 67, No. 399.

Scuoriun.  Hence we may form a table of the number of vibrations
of cach pote in a second.

=3 &
N = <
ot ﬁ—n‘— o |
[ ® ] - -— o—
© © v
s
— = = 4 8
(') C C C c c c c ¢ c
(Q = -
116 3 6 128 256 513 1034 2048 32768

c@d o T fBgabathbe

* Lﬁ_o ; m#cﬂbahﬂg@iﬁ

~alesof €, 256 288 307 320 341 384 409 427 451 480 512,

Foual trmperament 236 271 267 304 323 342 362 384 406 431 456 483 512,

Vrgremise tempe-
mments

256 270 887 303 321 341 360 383 405 427 455 481 512

Y. Tueoren. All minute impulses are conveyed through
a homogeneous clastic medium with a uniform velocity, equal
to that which a heavy body would acquire by falling through
half the height of the medium causing the pressure.  Lectures,
vol. ii., No. 400, p. 68.

If a moveable point be urged through a small space by the diflerence
of two forces, varying inversely as its distance from two equidistant fixed
points, in the same right line, the times of deseribing that space v.ill be
ulumately oqual, whatever be its magmitude.  For, calling the distance
of cach point a, and the space o be deseribed oy the forees will Lo

) 1 . . 2r . . 1
- and -—-, andd their ditlerence , which is to — a~ 200 t0 a—
a4+ aa - rr a

a-r
rz . ~ e
. bt since g evanescent, thes atio becomes that of 20 o a, and
1

the fouce sl a0 the space o b desenluad, consequently the tme,
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are equal, If therefore all the particles of an elastic medium contiguous
to any plane, be agitated at the same time by a motion varying according
to any law, they will communicate a motion to the particles on each
side, and this motion will be propagated in each direction with a uniform
velocity, and so that each particle shall observe the same law in its
motion. For as in the collisions of elastic balls, each ball communi-
cates its whole motion to the next, and then remains at rest, so each
particle of the medium will communicate its motion to the next in
order ; the common centre of inertia of two neighbouring particles sup-
plying the place of a fixed point; and the retrograde motions will also
be similarly communicated by the expansive force and pressure of the
medium ; and since the magnitude of the motion, while it is considered
as evanescent, does not affect the time of its communication from one
particle to the next, the velocity will not be affected by this magnitude,
and the whole successive motions will be transferred to the neighbouring
particles in their original order and proportion. For computing the
velocity, it is convenient to assume a certain law for the motion of each
particle, and it is simplest to suppose it moving according to the law of
the cycloidal pendulum. Let AB be the mi-
S FI E nute space described by the particle A, in one
N0 semivibration, while the undulation is trans-
. mitted through AC = DA, and let DE be a
DI H N[QAB C figure of sines, of which DA is the half Bsis ;
then if EF flow uniformly with the time, that
is, if it increase with the velocity of the undu-
lation, the versed sine FG will be in a con-
L M stant ratio to the motion of A ; the velocity of
A will be as the fluxion of the space, or of FG, that'is, as the conju-
gate ordinate HI; the force will be as the fluxion of the velocity,
or a8 FG ; and the force being as the change of density, or as its fluxion,
the density, or rather the excess above the natural density, will be again
as HI, and the fluent of the product of HI into the fluxion of the base,
will give the whole excess of density in DA, which will therefore be
represented by the figure DAK. But when A arrives at B, the
beginning of the undulation reaches C, and the whole fluid which occu-
pied A is condensed into BC, so that its mean density is increased in
the ratio of AC to BC, and AB represents the excess above the natural
density ; therefore let the rectangle DLMA be to DAK, or DKg,
as BC to AB, or ultimately as AC or DA to AB; that is, let DA.DL :

DKq::DA : AB,or DL= DXKEq’ then DL will represent the natural
density, while the ordinates HI everywhere represent its increase. Let
NA be the evanescent length of the particle A, then the force actuating
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it will be as the difference, of the densities at its extremities, or as NO,
which is equal to NA; therefore the force impelling A, is to the
whole elasticity, as NA to DL. Now if A be the height of a column of
the fluid, equal in weight to the whole elasticity, this weight will be to
the weight of A as A to NA ; and the force impelling A being 4 NA :

DL, this force will be to the weight of A as h to DL, orash.l-;%m.

Let there be two pendulums, of which the lengths are A and AB, then
with the same force, they will vibrate in times which are as 4/ A and

v AB, and if the force in AB become A I?_l?q , the time being inversely
in the sub-duplicate ratio of the force, the vibrations will be as 4/ A to
JAB. (%) oras h to DK ; and in the time of this semivibration

in AB, the undulation will be transmitted through DA, therefore in
a semivibration of A, it will be transmitted through a space greater in
the ratio of A to DK, which will be to A as DA to DK, or as half the
circumference of a circle to its diameter;. and while a heavy body
falls through half A, the undulation will describe A, its velocity will
therefore be equal to the final velocity of the body falling through half
A. According to this theorem the mean velocity of sound should
be 946 fect in a second, h being 27880 feet, but it is found to be nearly
1130, which is one-fifth greater than the computed velocity. The most
probable reason that has been assigned for this difference is the partial
increase of elasticity occasioned by the heat and cold produced by con-
densation and expansion.

10. Tueorex. The height of the barometer will not affect
the velocity of sound ; but, if the density vary, the pressure
remaining the same, the velocity will vary in its subduplicate
ratio. Lectares, vol. ii., No. 401, p. 69.

For the velocity varies in the subduplicate ratio of the height of a
bomogeneons atmosphere, and that height remains the same while the
density is only varied by means of pressure.

ScroLitM.  The velocity of the transmission of an impulse through
an clastic medium of any kind may be more generally determined without
the csideration of any particular law for the variation of the density ;
and it may be directly demonstrated, that the velocity with which any
impulse is transmitted by an elastic substance, is equal to that which is
arquired by a heavy body in falling through half the height of the
modulus of its clasticity. The density of the different parts of the
mendium, throughout the finite space, which is affected by the impulse
at any one time, may be represented by the ordinates of a curve; that
which corresponds to the natural density being equal to the height of



1_-58 PROPOSITIONS ON WAVES AND SOUND. No. XLVII.

the modulus of the clasticity. The force acting on any small portion will
be expressed by the difference- of the ordinates at its extremities, that is,
by the weight of a portion of the modulus equal in height to that differ-
ence; this force is to the weight, which is to be moved, as the fluxion
of the ordinate to that of the absciss; and the velocity with which the
density increases will be as the difference of the forces at the extremities
of the portions, or as the second fluxion of the ordinate of the curve;
and the increment of the ordinate expressing the density will be to the
whole, as half of its second fluxion to its first fluxion; while there-
fore the density varies 8o as to be represented by the mean of two
ordinates at a small distance on each side of the first ordinate, the
increment of the ordinate being represented by the mean versed sine of
the arcs, or half the second fluxion of the mean ordinate, the decrement
of the space occupied by the particles will be as much less as the fluxion
of the absciss is less than the ordinate, and the whole velocity being as
much greater than the difference of the velocities, as the foroe'is greater
than its fluxion, or as the first fluxion of the ordinate is greater than its
second fluxion, it follows that, in the same time, the particles will
actually describe a space equal to half of the first fluxion of the ordinate,
diminished in the ratio of the fluxion of the absciss to the ordinate; bLut
if the force were altered in the ratio of the fluxion of the ordinate to that
of the absciss, 8o as to become equal to that of gravity, the space de-
scribed would become cqual to half the fluxion of the absciss, diminished
in the ratio of the fluxion of the absciss to the ordinate ; and if the time
were increased in the ratio of the fluxion of the absciss to the ordinate,
the space described would be increased in the duplicate ratio, and would
become equal to half the ordinate ; and if a point move each way through
the curve so as to describe an arc while the variation of density causes
the ordinate to be diminished by a space equal to the mean versed sine,
it would describe a space equal to the ordinate or the height of the mo-
dulus, while half that space would be described by the action of gravity ;
conscquently the velocity of the points would be initially equal to that
of a heavy body falling through half the height of the modulus, And
that it would always remain equal to this velocity, so that the density of
the medium might always be expressed by the mean ordinate, may be
shown exactly in the same manner as has already been done with respect
to the motions of waves and of vibrating chords. The variation of the
velocity and the change of place of the particles may be easily deduced
from the successive forms of the curve representing the density ; and the
whole effect may also be considered as arising from the progressive
motion of the same curves which express the cotemporary affections of
the different parts of the medium, and which will also show the succes-
sive states of any one portion of it at different times.
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No. XLVIIL

AN INVESTIGATION OF THE PRESSURE SUSTAINED BY THE FIXED
SUPPORTS OF

FLEXIBLE SUBSTANCES.

From the Philosophical Magazine for 1815, vol. xlvi. p. 139,

To Mr. Tiroch.
Sir,

Tue formidable accident, which occurred some time
since, from the failure of the hoops of a vat of great size, has
led to an inquiry respecting the strength required in structures
of this kind ; and its results are comprehended in the following
propositions. It must be remembered that they are only cor-
rectly true upon the supposition that the resisting points are
ahsolutely fixed, and that in actual practice the forces will be
somewhat more equally divided : it would, however, be always
prudent to make the strength great enough for the most
unfavourable supposition that can be made respecting its
employment.

A. If a flexible bar, equably loaded throughout its length,
be supported at each end and in the middle by fulerums per-
fectly fixed, the middle point will sustain = of the whole

re.

Let the half length be a, the distance of any point from the
middle z, and the pressurc on the end y; then the strain at
the point, being the joint result of all the forces acting on
either side of it, as on the arm of a lever of which it is the

fulerum, will be y (a-z) — (a—z) 4 (@ - 2), since the
weight of the portion a— z acts at the distance ;— (a—r); and

the curvature will be as ay — ry - -—,; a* + ar- :— 2, the
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curve being supposed to differ but little from a straight line :

hence the fluxion of the inclination will be as ayz — yzz — —;—

. . 1 1 1
a*z + azxr — ;—x':,theﬂuent ayx — Tyx’— - a’r 4 5
ar® — —;- 23, which requires no correction: and in the sawe
manner the fluent of the ordinate will be found -;— ayz* — Tls-

yzs — —:— a’z® + % az® — ;l‘— x4, which must vanish when

z = a, since the ends are supposed to be absolutely fixed, or
=Lagy—Lay-L o Lg=-1,_2L
=30y -—g®y-gat s u® =3Y 8
3

16 of 2a, the whole pressure; so

a,and y = %a, which is
that the two ends support % of the whole pressure, and leave

—g for the middle.

B. In order that a flexible bar, equably loaded, may rest
equally on each of three fixed supports, their distance must be
*3472 of the whole length.

If the half length be a, and the distance m, the strain,

between the supports, will be ga (m —z) — l; (a — z)*; the
inclination, by taking the fluent, is found gamz - :—,-a.t' - T:
1

a’z+%az’—%z‘, and the ordinate%ama.’- %az’-——‘

as + %—ax’ - -;—‘.1:‘, which must vanish when z = m, and 4

3

1 1 4, 1 1 M 1 1

am — 5 am — = @ + - am ﬁm’,or‘—aam—za’__g_‘
. 28 14
msmustvamshalso;whenoem’—-s—am=..6a’,m__3.a

=% %? a,and m = “_;/lﬂa = +6944a; that is, about

71—2 of the whole length more than if the bar were composed of

three pieces, and each point supported an equal share.
C. If a flexible bar, equably loaded, rest on five fixed points,

at the distance of ; of the length from each other, and—llo
from the ends, the pressures will be as 59, 52, and 58, or as
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2107, 1857, 2071, 1857, and 2107 ; and if the middle support
be removed, the pressure on the remaining points will be as
11 and 21, or as 1719, 3281, 3281, 1719.

Calling the whole length 10a, and the pressure on the lateral
fulerums, y and z, the strain at the distance z from the middle
will be, for the portion next the middle, y (2a—z) + z(4a—z)

— ; (52 — 2)*; the inclination 2ayr — ;- y* + dazz — L 22
—’—:- a's +—: ar® — z—t‘; and the ordinate ay2® — %-yz’+
zs’ — 322 — @' + ;ar* — 5 24, which must vanish
when z = 24, and 0 = 4a’y — %a’y+8a’z—;—a'z—250‘

+ ’8_0 ‘—;a‘=a'{:—y + 1:: —i;a},and 8y + 20z = 57a.

In the next portion the pressure y is not concerned, and
the expression for the inclination becomes 4azz — ;—zz’ - ?

@'r + 5 ar - 52 + b and for the ordinate 2az2* — ya2

-?-a’:’+%ax’-;—‘:‘+bz+c: here b4 must be de-

termined from the first portion, the final inclination of the one
coinciding with the initial inclination of the other ; and making
in both expressions r = 2a, 8a%2 — 2a%2 — 25a° 4 10a® —
3 @+ b = da'y — 2a% + 8az — 2 — 250 + 10a° — 3
a'; consequently b = 2a%y : then the ordinate vanishing at the
beginning of the second portion, when z = 2a, we have 0 =
80‘:—;-a‘z —25a‘+% at —;a‘ + 4a’y + ¢; and when
z = 4a, and the ordinate once more vanishes, 0 = 32a%2 —
%a‘z-lOOa‘+ l?a‘—:zl,—ga‘+8a’y+c; and by sub-

140

u.cﬁou,wz-’-;-’a’z—75a'+—3—
44 115

0=a {? te— s a+ 43/}; whence, suppressing a® and

a‘—%a‘-{-‘ia’y =

subtracting 4y + lOz—%a,wchaveO: l-;z— ‘?a,and 2

= 24: consequently y = :—: a, and for the pressure sup-

ported at the middle, there remains 22 a.

VOL. II. M
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If we now suppose the fulcrum at the middle to be removed,
the equations for the second part of the figure and for the
inclination of the first part remain unaltered, and we have also

y +2 = 5a, and 4y + 4z = 20a, which, subtracted from 3

z—1a+4j 0, leaves—z——a 0, and z=:—;'a,

3
105

and ¥ = 57 &

D. In a flexible stave, forming part of the side of a cistern,
and supported only at the ends, the inclination at the top is %

as great as at the bottom.
The centre of pressure being at one-third of the height, the

upper support must withstand —;, and the lower —; of the whole
force, which, if a be the height, may be called 5 a*; and the

strain at the distance z from the surface will be the difference
of the strains produced by the pressure of the fluid and the re-

sistance of the support, that is :;a’z - %z‘, since the pressure
of the fluid above the given point, that is ;— 7%, may be consi-
dered as united in the centre of pressure, and therefore acting
at the distance %— z. Hence, for the fluxion of the inclination
of the stave, we have l a’zz — l 2%, and the corrected fluent
a’x’ -5 L 24 4+ b: again, for the ordinate of the curve
we ﬁnd, by a second mtaegrat:on, Loats - w T+ bx, which
mustvamshwhen.r—a,sothat a‘+b—0 and b =
aTo a': hence, when r = a, the inclination beeomes-a a -
355 @ = 5% ", while the initial inclination is represented by

- 7 4
b--ma.

E. If a stave be supported by three fixed fulcrums or hoope,
one at each end, the other in the middle, the upper one will
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sustain % of the whole pressure, the middle —fg, and the lower-

¢ 17
@

If we call the distance from the surface z, the pressure at
the top y, and at the middle 2, the strain will be first yz —

;— 2*; and below the middle, calling half the height a, yz +
z (z: —a)— —I 2%, whence the inclination will be first % Y-
5 +b;and secondly, y.r'— 5 &+ 32 —azr + ¢, and
the ordinate first — yr‘ - 20 2* + bz, and secondly %— y —
|To 2+ 3 28 - ; azz® + cx + d. Now the ordinate must

vanish in the first expression whenz = a: hence-% ya' —
1
24
a‘+—a‘—- ya® = —-a"y—sl0 a', which must be the
value of the inclination in the second expression when z = a ;

30 that - a’y—-—-a‘+;—a’z—a’z+c= :;a’y—3:—)a‘, and

a* 4+ b = 0, and the inclination in the middle is % ya® —

c a’y + 3 a' + - a*z: whcn, therefore, r = a in the

second expression for the ordinate, . a’ y — L a® + f. a2z —

P L L a’z+d 0=z a%+d

and d = —-a‘z- when also r = 2a,§a’y— l?’a°+ ;,’-a’z
2 - jdy+ @4z ja2=0=ay- a+
.i- a‘z,and z = :— a* — 6y. Again, the pressure on the third

point will be 2a® — y — 2, the three hoops having to sustain
the pressure 24*: this third pressure must also exceed the force

y by 2 a*, in order that it may hold in equilibrium the whole
pressure 2a’, acting at the distance :; a from the middle point,

considered as the fulcrum of a lever, so that y + ; a® = 2q*—~
M2
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y—zandz = % a* — 2y; whence, subtracting the former
5
value of 2, we have 4y — %a’ =0,y = f:za’,z = -‘-a', and

the third pressure ;—: a.

F. If a stave be supported at the ends, and by two inter-
mediate hoops at equal distances, the respective pressures will
1 9 24 11
» g
For the first and second portions of the staves, the values of
the inclinations and ordinates are determined from those of y
and z, as in the last proposition: for the third, the inclination

will be 3 y2 — - A+ 2 2 —azr + L ud — 2aur +¢,
which, at the origin of this portion, where r = 2a, becomes
2a% — 3 a' + 2a% — 2% + 2% — 4o’ + ¢, and this must
be equal to the final inclination in the second part, or to 2a%y
—;-a‘+2a’z-—2a’ —-%a’y-{- l—;-oa‘-}- ;-a’z, whence —
2*u + ¢ = —;—a’y-i-l—;-o at +%a’z, s0 that the ordinate
will be Lyz— =2+ ¢ e — 5 azd + 3 us — aud® +
2a’ux-~; a'yz + i—;foa‘z+;a’zx+f;andthismustvanish
when z = 2aand z = 3a,0r 0 = § @' — = @ 4 ja%e—
2% +atu—4dau + datu — Gyt a +at+f =g
@y - 5 @+ 3a% — 3 &% + ;a% —9a% + 6’ — ;- a'y
+‘%a‘+§-a'z+f, and by subtraction 3y — ;a’+%-z+
% =0,0r 36y — 21a" + 14z + 2u = 0. We have also, as
before, from a comparison of the evanescent ordinates of the
second portion, z = %a’—ﬁy, or 6z = 9a' — 36y, and by

addition, — 124 + 82 4+ 2u = 0. On the other hand, con-
sidering the stave as a lever with its fulcrum at its lower end,

we have;a'=8ay+2az+au,and2u=9a’-6y-43=
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12a* — 82, and 6y = 4z — 3a* = -:—a’—z,whenee5z= % a’,
= 5—)— a®, and the second hoop sustains one-fifth of the

pressure; consequently y = ia’— :;z= :—oa’,u=§ga’,
and there remains for the force at the bottom, -:—(l, . Ina
similar manner the calculation may be extended step by step to
a greater number of points; but as the number increases, the
inequality of the distribution between the neighbouring points
must of course diwminish, and if it became infinite, the pressure

on each would be simply as the depth.
A.B.C.D.

August 3, 1815.
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No. XLIX.

AN ESSAY ON THE PRESSURE OF

SEMIFLUID AND COHESIVE SUBSTANCES.

From Hutton’s Mathematical Dictionary, article ¢ Pressure.’®

'T'HE resistance opposed by friction, or adhesion, to the relative
motion of any two given solid or scmifluid substances, is nearly
proportional to the force urging the surfaces into contact. Since,
however, this force must necessarily be augmented by the force
of direct cohesion, which is proportional to the extent of the
surfaces in contact, it follows, that a portion of the resistance to
lateral motion, must also, in cohesive substances, be proportional
to the maguitude of the surfaces concerned, and independent of
the direct pressure. The proportion of the variable resistance,
to the force on which it depends, is that of the height to the hori~
zontal extent of an inclined plane, on which the surfaces would
begin to slide on each other, if this resistance only were concerned,
or if the force or weight were very great, and the extent of the
surface very small : and the angle formed by such a plane,
with the horizon, is called the angle of repose of the substance.
The mutual cohesion of two substances may be estimated from
the thickness of a coat of one of the substances, which would be
supported by it in contact with a vertical surface of the other ;
and both thesc properties may be practically determined, with
respect to any internal surfaces or sections of a given substance,
by raising a portion of it, terminated by a horizontal and a
vertical surface, until the angle breaks off, observing both the
depth and the breadth of the portion thus separating.

A. It is first required to determine the angle of fracture for

® Dr. Hutton, in some prefatory remarks upon this article, refers to his Course of

Mathematics, vol. ii. p. 196, and vol. iii. p. 2536, tor a popular theory of the pressure
of pretty con;pm:t or tirm earth. — Note by the LEditor.
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a semiftuid and cohesive substance, terminated by a horizontal
and a vertical surface, and supported only by a horizontal force.

We bave here a wedge of the given substance, tending to
slide down an inclined plane, and to overcome at once the
horizontal pressure, and the resistances in the direction of the
plane derived from the cobesion, and from the friction produced
by the sum of the other forces; and we are to determine the
breadth r of that wedge, in which this tendency will be the
greatest, its depth being a.

Now the weight of the wedge being expressed by daz, its
immediate temlency to descend along the inclined plane will be

J(-+ 7)) which will be opposed by the horizontal force

f, acting in a contrary direction, and reduced to f J(M*_u),

and by the resistance derived from three sources: the first
from the cobesion, which is expressed by &4/ (aa + zz),
b being the thickness supported by the lateral adhesion of
a vertical surface; the second and third from the two pres-

sures, represented by dtar. 7(T:-+_") and ¢f . ma
where ¢ is the tangent of the angle of repose, the resistance

being to the direct or perpendicular pressure as ¢ to 1.
Hence, for the state of equilibrium, we have the equa-

jax.

tion Jar. jo 0 = f- 7——(‘”‘“,) + by (aa + 1) +
ar .y Y Ty A de'z = fr bt +
jats + aff; whence f = 12ETIR BTl iy e
must be a maximum in the section affording the greatest
pressure, and its fluxion wmust vanish; whence we have
t§a® = 2br — atr) . (r + at) = da*zr - a* — br* ~ }ats;
(b + fat) &* + (2abt + a'f) r = a® + {a't; 2 + 2atr = a',
r=J(@+a®)—at; and if b<0, f=a'[§+£ -tV (1+8)].
Hence it appears that, as Mr. Prony has already observed, the
angle formed by the surface thus determined, with the vertical
surface, is half the complement of the angle of repose, since
o (1 4 ) —¢is the tangent of half the angle of which the
cotangent is ¢, as is casily shown by a trigonometrical calcula-
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tion; and that this angle is independent of the magnitude of
the cobesive resistance, and determined only by the friction ; at
the same time, if the friction vanishes, and the cohesion alone
remains, we have z = q, the angle being 45°.

B. The portion of a semifluid and cohesive substance, of
which the surfaces are horizontal and vertical, affording the
greatest lateral pressure, is terminated by a plane.

For if we conceive the substance to be divided by a second
vertical surface, parallel to the first, the angular situation of the
upper part of the oblique termination, cut off by this surface,
will obviously be correctly determined, if considered as a plane,
according to the principles already laid down; and if any
curved surface would afford a greater lateral pressure than a
plane, the direction of the lower part of the oblique termination,
considered also as a plane, would require to be different from that
of the upper, and this difference might be exhibited by sup-
posing its horizontal extent to be varied, that of the upper
portion remaining the same. But in fact, the determination of
the direction for this part, thus considered, will be precisely the
same as for the upper part; since the proportion of the
resistance to the pressure remains the same, and the horizontal
force acts on the lower part of the oblique surface with the
same increased intensity as the weight, the one depending on
the other ; so that the relations of all the forces concerned in the
determination remain unaltered.

C. To determine what portion of a soft and adhesive sub-
stance, having a horizontal and a vertical surface, will stand
alone.

Put f = 0, then da*z — a*b — bzz — datzz = 0; and
if ¢t is given, let ¥ (1 +#) —¢t be r, and z = ra, then
dra® —a®d — rPa®d - 4r’ta® =0, and dra—b—rb—4ir'at = 0,

2b + 2rrb 26 1 4b .
anda = ——- =—-|—t-%=7,and b = far; but if we

r—rrt r
observe ¢ and z, we find ¢ =aa—2;:f, and b = :‘—:—-Ta—z
When ¢ vanishes, z becomes equal to a, and & = la: if
t=1, b="1036a: if t =14, b =-155a.
D. When the surface of a soft, or semifluid and colesive
substance, is inclined to the horizon, the portion affording the
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greatest horizontal pressure is generally terminated by a
curve.

We may suppose the substance to be divided into vertical
strata ; and the mean depth of any stratum being called y,
and the difference of the depths of its two surfaces ¢, we must
inquire what must be its thickness z, in order to afford the
greatest horizontal thrust. The weight of the stratum will
then be represented by yz ; and if the tangent of the elevation
of the exposed surface, ascending from its angular end, be u,
the length of the oblique termination of the stratum will be
v (2*4-(c+ux)?) =z: we have then, for the state of equilibrium,

c+ux

the equation yr . et ur =f. £+bz+ty.t.£+§f. —— and

cyr+uyrr—bzz—tyrx _ uyr+ wyrr—brzr—bec— eur — buuzr~tyxx
’

f= z4ct+ tux zr+ct+ tur
then putting the fluxion of f =0, z only being variable, we
obtain (cy + 2uyz —2bz —2bcu — 2bu*x —2tyz) . (z+ct + tuxr) =
(1 + tu). (cyz + uyz® — bz* ~ bc* — 2beur — bu's* — tyz®);
(2uy —2b—-2bu®-2ty) z . (1 +tu)  + (2uy—2b-2bu*-2ty) z .
ot + (cy—2bcu) . (1+tu)z + (cy —2bcu) . ct = (1 +tu).
(vy—=b=bu*—ty)2* + (14 tu) . (cy —2bcu)x — (1 + tu) . bc*;
2bcu — . ct = (14tu) . bec

and & + % - x= ((uy- bc;y)bu —ty§ .tl 3}-lu) ’
. bty —ty = b ¢

is found = “/((1 -i‘-‘tl)' + (uy - b= bus —{y) Q +tu)) BET R
Having thus obtained the angular direction of the termination
of the vertical stratum, which affords the greatest lateral thrust
when the beight is y, we may proceed to find what must be the
wagnitude of y for different strata, in order that they may all
posseas this property, and that the whole horizontal force may
consequently be the greatest possible. For this purpose we must

substitute :’; for Z, r being now considercd as the whole hori-
zontal thickness, and y the whole vertical ordinate or depth, as
y 1 + tw) . (btu—ty—b)

y (J(ta_’_g.__"_*y) -t =

14t uy — b~ bun — ty

k3
whence <

before. Hence —r =

Y (g Tty=h-bu-dy _ Y bttty
lf‘I(J uy - b-buw—1ty =)= l+u(‘ b+buu+ (t-u)y ')'
v¥=h = hun . 200

Call V(b4 buus (t—wy y), vythen y = =505 =20
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. 209 (¢ + #)0* = b= buw
and -2 = Gy Y G+ Mt + t-« )
_ty 20

T it (1+¢u) =V (b+bu— = (b+buu): (t—u)+ (t+8):

—u)(b+bt b+bu
(t—u). )= 2: and if we call S=REAEDCLAND g

. 20 t+t'
we have — 7 = Gt . (=) Vi V@ +d) - l+u

But it is well known that the ﬂuent of V(@ + ) z is
4z ¥/ (a®+7*) +4a*. 5L (z + #/(a'+7%)), and by companson
with this fluent, we obtain the equation ¢ — z =

(I-HI) (t~w)
¢+t

BL (0 + ¥ (@ + ) — i +©.

When, however, ¢ —u is negative, that is, when the elevation
of the inclined surface is greater than could exist without the
cohesion, the fluent assumes a different form, and we must

. (w=1).(b+¢t) + b+ bun . -2y
make d?* = T+t ; then — 2 = O +wm).(w=0)
‘+" -) - l:_’“ . But it is known that the fluent of

,/(as_x’) zis 4z V/(a®*—2%) + 4a* arcaine‘—:; hence ¢~z be-

1 +e A v ty
comes =€~ 3y umry /;17 (dJ(d'—v’)+d’arcsme3)-m-

E. When the variable resistance vanishes, the curve becomes
a parabola.

. x F b
For if t=0,; or:;becomes =y’m, whence r e =
2 V(P + b ~buy); but whenz=0, y=a, and e= . v (¥ +

Puu — bau), and therefore (z + 1 v/(8 + buu — bau))® =

W Sy B b — baw).

and y =a—J(l+uu-5u)z—4—bz’. In order to de-

termine the whole horizontal force, we must find its fluxion
by substituting z for z, and ~ y for ¢, in the equation for f,

which becomes — yy 4 uyx — b& — b’—’ + 2buy — bu'z; and

since — y =~/(l+uu-3u).c + 2-6:.::, we obtain the fluent
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=g -4y +aur —3 V(4 uu—Gu)P— 52 — br—bz -
b’z 4 auxr — ;T.bz’— ; V(I 4+ uu —;u) 2 4 2buy — bu'z =
9+(2au—2b—2bu)z—u V(1 +u* = u) P~ 5 2+ 2buy —4y*,
which. must vanish when x=0, and y =g, or g + 2bau—4a*=0,
and g =4{a* — 2bau. When y=0,z+¢ = %b v/ (1+u*), and
=21+ =2 /1+« - % u), and the whole force is
}a* —2bau + (2au — 26 — W)z —u V() 40— u) 25 2.

Here it must be obeerved that when % u is equal to or
greater than 1 + u*, the problem becomes impossible, the
value of = becoming first infinite and then imaginary. We

may take for an example the case u =y and a = 103,
then z = 2a (/101 — ‘1) = 1-81a, and the whole force is
}o* — 020" +(-2a —2a —002a)z — Ol 2"~ 5 =-345a%. Ifu=1,
and a =25, r = 4/2a, and the force 3a* ~ a® — +/2a* — §4/2a?,
which being negative, implies that there can be no separation.
In order to show how little the force thus determined differs
from that which is afforded by a section terminated by a plane
surface, even where the variable resistance is supposed to be
abeent, we may calculate, for the depth of a, the horizontal
extent r of a prismatic section affording the greatest pressure,

the equation of the forces will then be jazr “t= — bz =f . 2,

(2 s

and f = §a*+ faus — % = §a* + yauz —bz — £ — 2bau — s,
and when its fluxion vanishes, 4au — b + b;—: — bu* = 0, conse-
qucntly% =14 u ——:—:, which, when u = %, and a = 100,
becomes ‘51, and z = 1'4a, whence f is found ‘337a%, which
is not one-forticth part less than the more correct result of
the former calculation. When the cohesion vanishes, and the
variable resistance alone remains, the maximum of foree seems
in all cases to be afforded by a plane surface, whether the
resistance 1= horizontal or not.
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F. It remains to be determined, what is the proportion of the
forces, when the pressure, instead of being horizontal, is sup-
posed to be oblique, as will be the case when the surface of a
wall is opposed to the thrust of earth, and exhibits a lateral
adhesion or friction, as well as a direct resistance.

We have here two new forces to be considered, the one
_constant, representing the adhesion of the wall, the other
depending on f the horizontal pressure, both tending directly
to lessen the weight, if we consider the surface of the wall as
vertical. We may still call the horizontal extent of the pris-
matic portion z, disregarding the slight inaccuracy of supposing
the oblique surface a plane; and u being, as above, the
tangent of the elevation of the exposed surface, the friction of
the wall being, for the sake of simplicity, considered as equal to
the internal friction of the materials, which it can never exceed,
and of which it will seldom fall short, we have the equation

(Raz —ab—tf) 2= bz —t Gaz—ab—tf) Ty 2= = 1,

(Rar—ab). (a+ur) —bz'—tz(Yar—ab)
and f = S S Tttt ¥ F ,andwhenxtsﬂuxxon

vanishes, (3a* + aur — abu — 2bz — 2abu — 2u’z — atz 4 tad) .
2t (a+uz)—tz+ z)=2tu~2+1) . [(Jax—abd) . (a4 uz) -
bz*~ b (a+ uz)?) — ytaz® 4-tabz], or [(au — 2b — 2bu® — at) z 4
ya* —3abu+ath] . [(Qtu— 4 1)z 4 2af] = Qtu—£+1).
[(3au — b — bu* ~}at) 2* +(Yau — abu — 2abu + at) z — 2ab} ;

a+u.r

2atz 2at (4a® — 3abu + atb)
whence 2* + 2u—tt+1 + (au — 2b — 2buu—at) . (A —tt4+1) =
2a%h datxr
“’_au-zb—zlmu-—at’or1’+2tu—n+1—2a'
2btu — at — 2b

G T 1), (au—26—buu—an)’ and z may be found by com-

pleting the square.

But for practical use on a large scale, we may neglect
the cohesive resistance without impropriety, its value being
generally variable, from the effects of moisture and agitation,
so that it would be unsafe to place any dependence on it, even
if it were much larger than commonly happens : we may there-
datr {

= 9,2
w41 - 20 Qtu—tt+1).(t—n)’

fore make 4 =0, and 2* +
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Sat a 2
ad z+ oy = t“‘/((m—tu1)'+(m-u+1).(¢-u))=

t e v 225 whence f may be readily determined,

a—(t—w)x

being equal to faz . o 4 G w72

If the wall, instead of being vertical, be inclined towards the
bank, which is a condition highly favourable to its stability, the
oblique direction of the thrust must also be taken into conside-
ration, in computing its magnitude. Let u be now the tangent
of the deviation of the wall from the vertical direction, the
surface of the earth being horizontal, and let z be, as above, the
whole horizontal extent of the portion affording the greatest
thrust, the force f being perpendicular to the wall. We shall
then have for the weight, 3a (z — au), acting in the direction
of the oblique surface z with the force 4a (¢ —au) 7, and

causing a resistance §az(z—au)-. In order to reduce the force
S to the same direction, we must find the sine and cosiue of the
angle contained by the oblique surface z and the wall, which are
r—aw (r—au 1 (x—au a+ur
Torray wd V(1= 5550 = @+ 555 = e

a 4 ur

X — au o e
whence we have fm, and {fm; and the friction
of the wall, 2, being reduced in a similar manner, gives
N J(‘:—_:'), and — ﬁ'ﬁ%‘;, whence we have the equation

a z z—au a+uxr
fa (z—au) = tat (z—au) : t+ fz~/(l+u.) + 1t z4/(14un) +
+ z-
R e — S ey O @ (s—au) = atz (z—au) +
r- (a4 ur I —-as
Y Jarem + Y yaaay — Y yasem: consequently
24 (a=tr) - (z= av) : this we may call

aev(1+m) (2= . (z—as) + 4(a + ur)

‘+—: .:;‘"; and when its fluxion vanishes, (c+2dr) . (ex+49) =

ed + cex + dex* = cex + 2der* + cg + 2dyz, "‘4‘?":3—%’

b
and z=~/(3—g+g)—’—:. Here b = — a’, ¢ = a + atu,
d =<1 3-: ".3, 3:-:—'—au,e=2-2¢’+4m, and

9=“—(2—2ﬂ)“.
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G. It will now be easy to find the dimensions of a wall,
capable of withstanding the thrust of a given bank of earth,
without being overturned or carried away horizontally, provided
that we know the elevation at which the surface of the earth is
capable of supporting itself.

It is obvious that the whole pressure, like that of fluids,
must be proportional to the square of the depth a, ueglecting
the effect of adhesion: and consequently that the centre of
pressure must be at one-third of the height. We may consider
the specific gravity of the wall as equal to that of the earth,
which will in general allow us some excess of stability for the
security of the work : then if the wall be vertical, and its thick-
ness be y, the force being referred to the outside of the base of
the wall as the fulerum of a lever, we must have, in order that

it may not be overturned, iaf=tfy + dayy, and 3*4- ? y= 4,
Y= ~/(§f+"%‘)—j£. And in the same manner, if we

suppose the section of the wall to be triangular, its outer
surface being sloped off, we have }af = tfz + }azz, and

z= /& + (f%- -%, z being the thickness at the bottom.
When the wall is inclined towards the bank, in an angle of which

the tangent is u, f being the force perpendicular to it, and y the
horizontal thickness of the wall, the force f will act on a lever

of which the length is §a+/(1+uu)+ 4—(3_:,, and the friction
tf will act at the distance J—(lz:;), and the weight at {y-+dan,

whence yaf /(1 +uu) + J(‘ +“) J({‘ :“) + day* + a'uy,
and -/"*'(a.z/,:lq-n) +au)y = §f v (1+uu); consequently

y= VI () + (CRE 1 jany) - R

If the wall be not securely fixed at its foundations, for
example when the earth is dug away beyond it, it may be liable
to slide away laterally more easily than to be overturned.
Supposing it simply to rest on materials similar to those which
constitute the bank, we may calculate the thickness sufficient to
produce a resistance equivalent to the thrust ; thus if the wall
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is vertical, we must have f = ¢ (ay + f2), and ay=%-ﬁ; but
when the wall is inclined, the force f takes from the weight
the p?rﬁon f J(—‘“ﬂ;) and the friction adds to it only
. . 1
M ZFw» the borizontal thrust being f J(ises)$ Whence
1 u t
s Jite) t(ay - f & (T 4uw) +f N +un)? and ay =
Vi 1
Tlitwm) (F+u-o
H. In the case of driving a pile, the pressure of the soft
materials is modified by the inversion of the direction of the
friction of the vertical surface, which now acts in conjunction

with the weight of the materials, so that }ar — ab — ¢f
becomes dar +ab 4 ¢f, or, if b =0, simply dax + ¢f; and

f=4%- ‘%'I?—', which is greatest when z is least, and becomes

ultimately 2%, and the resistance ¢ will be 4a* 7. which

is a maximum when & 4 1= 2¢, or ¢t =1, being then }a*;
and in this case the resistance derived from the friction, on
the whole of the lateral surfaces of a square pile, would be
equal to the weight of the earth which would press on one of
the surfaces, if it were buried at the depth to which its lower
end bas penetrated. There would however be other resistances
from the tenacity preventing the ready separation of the earth
before the pile, which would perhape considerably exceed the
friction thus determined.

1. Sach of the results of these calculations, as are most likely
to be of practical utility, may be conveniently exhibited in the
form of a table: but it must be remembered, in its application,
that some additional strength ought always to be given to the
works concerned, in order to ensure their stability, and that
uccasional agitation will very much diminish the resistance of
almost all kinds of materials ; to say nothing of the precaution
necessary to obviate the effects of the penetration of water;
which will not only act by its own hydrostatic pressure, but also
weaken the adhesion of the earth employed, unless a sufficient
number of apertures can be provided for allowing it to escape.
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TABLE OF THE THRUST OF EARTH AGAINST AN UPRIGHT WALL.

Surface Horizontal.
t of the sarfas chietncmof] Requisite
e su! ness O al
the angle of Angle of re- | of the por- Horizonta] | ® Yertical jthicknessoff Thickness
Tepose, €X- |hosent which| tion afford- wall of | triangular | required to
ng the |1} o substance| ing the | thrust, that wall; the | secure s
' s of t'mn-. pu? gr:‘iten of a fluid | 40 ;.r‘:- external | wall from
the resistance toely. re, the|PeiR8 UBItY.| Cipe Pies | ‘eurface | sliding.
to the pres- mwu thm being ob-
sure. unity. being unity.| lique.
1: o] 00°00 | (1:414) | 1°000 <577 <707 ®
1: 10 5 43 1°234 *761 *491 *591 3767
1: 8 7 7 1°194 718 <470 *575 2-812
1: 6 9 28 1-132 *640 *444 *539 1867
1: 5| 11 18 1°086 - 589 +424 *514 1°414
1: 4| 14 2 1+022 *522 396 <479 <979
1: 38| 18 26 <927 *430 355 *430 *573
1: 2| 26 34 774 +300 <292 +352 *225
2: 38| 33 41 *660 =217 *246 *295 090
3: 4| 36 52 *611 186 226 *270 *059
1: 1| 45 0 *500 *125 *184 *231 *000
Descent of the surface towards the wall 10°
1: 5 11 18 38:750 <805 *491 *591
1: 8| 18 26 1-518 *528 +3899 +481
1: 2] 26 34 1:058 378 -322 +886
3: 4| 36 52 *753 *3211 *240 *287
1: 1 45 0 *585 *138 *192 *230
Descent of the surface towards the wall 20°
1: 2 26 34 2¢022 *452 *350 *418
3: 4 36 52 1°040 247 *285 *304
1: 1 45 0 *743 *155 *200 *239
300
3 4' 36 52 | 1581 l -302 | -g82 | -335
1 1 45 0 1-076 *186 *220 -262
400
1: 1] 45 o] 1ns | 26 | 208 | 204 |
Ascent of the surface towards the wall 10°
1: 5 11 18 *746 *507 *391 *478
1: 8| 18 26 712 374 332 +401
1: 2] 2 384 *639 +267 276 333
3: 4 36 52 *534 *170 217 *261
1: 1 45 0 *452 °119 *180 *216
209
1: 2 26 34 *559 239 *263 *317
3: 4| 86 52 *486 +154 208 -250
1: 1 45 O 377 *117 *179 214
30°
3: 4| 3% 52 460 133 *195 234
1: 1 45 0 *408 *098 *165 *197
‘oﬂ
1 1| 45 0 ' 408 +090 *159 | 203
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TABLE OF THE THRUST OF EARTH AGAINST A WALL INCLINED TOWARDS THE
BANK IN AN ANGLE OF 11° 18, oF wnichH THE TANGENT 18 2; THE
SURPACE BEING HORIZONTAL.

: Hnr::o:nufl tl;uoct , Thickness Thick
extent o rust | d to c!
mo:‘ : Angle of porti against the Hori 1| secure a requir:ie:.u
repose. | TOPOSe. nlloulhfg wall, that | thrust. | wall from [secure a wall
the g of afluid being | from sliding
) | pressure. being | lovertured.| back.
! , unity.
' i
1 : 00 00° 00’ " ( *200) | 1000 ' *500 *540 ®
[ ] 10 ! 5 43 | 1°419 721 - -360 440 3:640
) 8. 7 17 | 1373 *661 330 *410 2°670
1 6 9 28 ; 1:296 -579 . -289 *367 1747
1 5 11 18 1-242 *523 *261 *337 1-308
1: 4 14 2 1°166 *453 | °226 *300 *847
1 : 3 18 26 1 059 *354 177 *248 *508
1 2 26 34 -885 =225 112 *176 *191
2 : 3 33 41 *733 *149 074 *130 *077
3 4 36 352 . *636 | ‘121 <060 ‘11 <047
1 1 45 0 *586 | *071 +035 : ‘074 007

An instance has occurred on a large scale, where the wall of
a dock has given way horizontally, when its mean thickness was
about ‘230, the ground having been dug away beyond its foun-
dation : it was of brick, and somewhat curved, being vertical at
the top, while the inclination of the chord, or the mean incli-
nation, was 11° 18’ as is supposed in the second table. Hence
it appears that the friction must have been somewhat less than
§ of the weight, and that the materials would have stood at an
angle of about 25° ; to have overturned this wall, the materials
must have exhibited a friction of about one-third of the weight,
and bave been incapable of standing at a greater inclination
than about 20°.

In general, it will be unquestionably proper to calculate on
a friction not exceeding 4 of the weight, and to make the thick-
ness of a wall, if vertical, at least  or perbaps } of its height,
and if inclined in an angle of 10° or 12, about }, taking care
tn scecure the foundation from sliding, to which an inclined wall
will otherwise be liable if its thickness be less than }, though a
vertical wall would be safe in this respeet if its thickuess were
ufficient to secure it from being overturned.  The disposal of a
part of the materials of the wall in the form of counterforts, or

VoL 1 N
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buttresses, will add to the strength in either case, especially with
respect to the danger of overturning: the curvature, which is
a considerable convenience in the case of a dock, tends in a
slight degree to lessen the stability with respect to sliding, and
makes it still more necessary to attend to the security of the
foundation. On the other hand, when we have an opportunity
of ascertaining, by a simple experiment, the utmost fluidity
that can be communicated by accidental moisture to a chalky
or gravelly soil, these calculations may often justify us in saving
a very great expense, by proportioning the strength of the
works to the object required to be attained by them.
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No. L.

REMARKS ON

THE STRUCTURE OF COVERED WAYS

INDEPENDEXT OF THE PRINCIPLE OF THE ARCH IN EQUILIBRIUM,
AXD ON THE BEST FORMS FOR ARCHES IN BUILDINGS."*

From Nicholson's Journal for 1807, vol. xviii. p. 241.

To MR. NicHOLSON.
Siz, '

TaE subterraneous passages or tunnels of the Babylo-
nians, and perhaps the cloace of the Romans, were constructed,
according to the opinion of the best informed antiquaries, by
simply causing the bricks or stones of each of the side walls to
project more and more as they rose higher, till they finally met
in thesummit. The most ancient remains of the Grecian build-
ings, for example, the treasury of Atreus at Mycenz, and other
ruins in the Peloponnesus, exhibit in general over their doors,
according to the reports of modern travellers, a triangular
aperture, formed by large stones; the base of the triangle
coinciding with the lintel of the door; and the pointed arches
of the Gothic buildings arc by no means universally so ar-
ranged, as to derive their stability from the proportion of their
curvature in every part, to the pressure which would be pro-
duced, according to the commonly received theory, by the
height of the superincumbent wall. As far as I know, this

® Thus article 1s somewhat remarkable, at least amongst Dr. Young’s writings, for
sts clear and elegant geometrical treatment of the subject of arches under their most
simple conditsons, and leds to some very curious results,  The article on Bridyges,
whih follows nest but one to it, will involve considerations of a much more recon-
dite nature, where the friction of the matenals and their resistance to extension
ind compression, 1w well as the mechanical equilibiium of the arches which they form,
=il be taken into account.— Note by the Editir,

N2
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subject has not been mathematically investigated in all its
parts, and I shall therefore submit to the consideration of your
readers some propositions relating to the stability of overhang-
ing walls and of triangular covered ways.

I shall examine those cases only, in which the materials em-
ployed are cqual rectangular parallelopipeds, whether bricks
or wrought stones, and in the first place I shall suppose them
destitute of all friction or adhesion, and placed horizontally.
With such materials, it may be shown from the principles of
the lever only, that a covered way may easily be made, not
exceeding in breadth the length of three or four bricks or
stones, and that the combinations, represented in Figs. 1.. 7,

Fig. 1. .4,
N nii [T
1111000 O 411 Fig. 3. I W (NBUTRLARB
1 — — (LTI (I1NEHH B0
L ] . 1 1 1
8
4

]
Fig. 6. Fig. 7.

1t F] 2
will stand in equilibrium without external support: and that
if the breadth of the way be equal only to the length of two

bricks, it may have any height of wall added over it without
destroying the equilibrium (Fig. 8). These combinations are

Fig. 8. however incapable of resisting the pres-
Cr— 1 1T [T 1 .
Ot sure of any considerable force, and the

method of building in this manner cannot
be generally advisable ; but the weight
of two bricks is supported at the vertex
in Fig. 9, and by extending the basis,
and heightening the wall at the sides,

2 a much greater strength might be
obtained. It is however obvious, that a wall terminated in this
manner would by no means necessarily exert such a pressure
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on any stones forming a facing of the oblique surface, as is
commonly supposed in the theory of the arch; on the contrary
it is plain, that an arch might be turned under it, which would
be sufficiently strong for every purpose, if capable of supporting
little more than its own weight: and the same reasoning is
applicable to the wall in contact with the lower parts of every
common arch. Hence it becomes often eligible to construct
the arch insuch a manner as ta be more capable of resisting
a pressure near its vertex ; and thus its form will approach in
some degree to that of a pointed arch. The arches of bridges,
on the contrary, have to support the pressure of materials of a
very different description; and for this reason their greatest
curvature should be near the abutments.

In the next place I shall inquire into the conditions requisite
for the stability of an oblique facing, composed of rectangular
bricks or stones only, both with and without the consideration
of the effects of friction. The simplest case that can be pro-
posed is that of two bricks meeting each other, and standing
on a perfectly smooth and horizontal plane, the centre of
gravity of each being vertically above the lowest angle (Fig.
10). But if the base be widened, the surfaces support- ..
ing the bricks must be rendered oblique. The weight -@-
of the brick acts on a lever of which the length is A B
(Fig. 11), in turning it round the point Fig. 11.

B; and this is resisted by the horizontal
thrust at C acting on the lever B D,
hence the horizontal thrust must be to D N
the weight as A B to B D, and making \H
BE = AB, the horizontal thrust at B \

combined with the weight will act in the |\J_
dircction D E, and the brick will be H G ATBE
supported by a surface B F perpendicular to D E.  Supposing
the thickness of the brick inconsiderable, the centre of gravity
being in the line B C, taking B G half B 11, the line C G will
be perpendicular to the surface on which it will rest in equili-
brium : and this theorem may be of considerable use in car-
preutry, for tinding the best possible direction for the abutent
of a rafter.  If the abutment is in the direction of the end of
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the block Fig. 12, describe on half the diagonal, A B, the semi-
circle BCD A ; and CB, or D B, will show the position of a
Fg. 12. line, which being made horizontal, the block
will be supported in equilibrium. If the
horizontal line cross the circle between C and
D, the end B will slide downwards, but if
D between A and D, or B and C, it would be
urged upwazds, but the bearing would be
transferred to the lower corner, and the
whole will remain at rest: and this will be
the case in all positions, when the circle falls wholly within
the side of the block, that is, when its thickness is not much
less than half its length. Thus two common bricks would
remain firm in all elevations if placed with the narrow sides
of their ends lowermost; even without any friction: but with
the wider sides lowermost, they would slide down the abutments
if the distance of their ends were more than about two, and
less than fourteen inches.

The last additional circumstance which requires to be ex-
amined, with regard to the stability of bricks or stones in
oblique situations, is the effect of friction or adhesion. This
force may be considered, in all practical investigations, as pro-
portional to the mutual pressure of the surfaces concerned ; and
the most convenient way of estimating its magnitude is to in-
cline the surfaces to the horizon, until they begin to slide on
each other. The angle at which this happens will be always
very nearly if not exactly the same for surfaces of the same
kind, and it may with propriety be called the angle of repose ;
and it is obvious, that any other force acting on the surface in
the same angle as that in which the force of gravity acts in this
instance will be completely obviated by the resistance of the
surface: and the friction will be to the pressure, as the tan-
gent of the angle of repose to the radius. If therefore the
surface A B (Fig. 13) is calculated to resist the pressure of

Fig. 13. the block A without friction, by making

c theangles BA C'and BA D cach equal

y/i,.’]; to the angle of repose, we may deter-

~ ==FA D minc the greatest and least inclination

C
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which will be sufficient for retaining the block by the assistance
of the friction or adhesion; the stability Fig. 14.

being greatest of all in the original situa- A

tion AB. In the same manner the rect-

angular block A B (Fig. 14) will be sup-

ported by its abutment as long as the

borizontal line BC crosses the semicircle D

within the line A D, D AE being equal to € B
the angle of repose.

When two blocks of equal dimensions form an overhanging
facing on each side of a triangular aperture (Fig. 15), the
upper one is in the Fig. 15.
same predicament as
if it rested simply on
a fixed abutment ; the
lower one is retained
in its situation by the
force of friction only.
If A BC be the angle
of repose, the direc-
tion of the force sup-
porting each of the upper blocks will be BC; and if the ver-
tical line B D represent the weight of the block A, B C will be
the resisting force, and A C the friction, which counteracts
the tendency of the block B to descend along the abutment,
and this force is represented by E B. In order therefore to find
the position in which the block B will most readily slide away,
we must make the proportion of E Bto AC a maximum;
and this will bappen when the mean of the angles DBA
and DBC is equal to half a right angle. For the sine

of the angle DBC being g—g, and its cosine ;—:—2, and the sine

and cosine of A BC being ﬁ—g, and f—l-f, the sine of DBA
. DC.AB BD.AC

BC
BHeq, tBCq

which, divided by A C, is BD.

DC.AB+BD.AC
By

»and consequently EB =BD.

S.AB BDy .
:’:%’Bc—q'*'li—(ﬁ:’ and this must be
AB

AC’

a maximum, consequently, BC being supposed constant,
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B—[)B'Clt’.g.%%q must also be a maximum. Then if we make D F

perpendicular to B C, and the angle FDG=ACB, DF
will be 22-BC, F G=42. “Dl;gc, and BF =223, so that
B G must be a maximum, which will evidently happen when
DG is a tangent to the semicircle BDC, and the angle DBC
half D HC, which is the difference between A BC and a right
angle. If we wish to determine the proportion of the friction
to the pressure when the friction is barely capable of retaining
the block in its situation in the most unfavourable position,
let x be the sine, and y the cosine of half the angle A BC,
then the sine and cosine of half a right angle being + 4, the
sine of ABD or BDE, as well as that of BC D, will be «/ 4

x4 4y. Now, if the weight be BD, BC = 2oy and
the sine of ABC being 2z y, AC is @L_:z—)B—[-:/—; : but the
weight which produces the friction is three times the weight of
a single block, the friction on the upper surface being derived
from the pressure of the highest block, and that on the lower
from the pressure of both blocks ; while the tendency to descend
helongs to the lower block only, and is therefore expressed
by BD ./ % (z + y) ; hence we have the equation (z + y) v/}

= ﬁh; therefore 4 (z +y)* =62y, (z+ y)' =12zy,
r'+y*=10zy =1, and 2 z y = §, which is the sineof A BC,
and the friction is in this case to the oblique resistance as
1to 5, and to the pressure nearly as 10 to 47: so that whenever
the friction is greater than this, which is almost always the case
with the materials commonly employed, two pairs of equal
blocks meeting each other in this manner will be secure from
sliding in every- possible position. Ifthere are more than two
blocks on each side, or if the lower blocks are larger than the
upper one, the force tending to support the lower ones, which is
derived from the pressure of the upper one, is twice the imme-
diate friction occasioned by its weight, since the same pressure
acts in two different places, and as long as this exceeds the
difference between the friction aud the relative weight of the
lower block or blocks, they will be secure from sliding along
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the abutments. For example, in the case_of common bricks or
stone, the friction is at least half of the pressure ; for if a brick
be placed with the short side of its end downwards on another
which is gradually raised, it will fall over before it slides ; we
may therefore safely estimate the friction as equal to half the
pressure, the tangent of the angle A BC being .5, its sine
.446, and its cosine .892. Now if the whole aperture be sup-
pused equilateral, the sine of D B A will be .5, and its cosine
.866 ; and the sine of D B C nearly .06 ; and the friction A C
will be to the weight BD as .45 to 1, and to EBas 9 to 10,
so that 18 bricks on each side might be secured from sliding by
the double effect of the upper pair.

There are however two other ways in which such a structure
might give way: the lower portion revolving on its lowest
point, and the higher either moving with it towards the oppo-
site side, or sliding upwards in a contrary direction: and in
order that the pile may stand, it is obvious that it must possess
sufficient stability in both these respects. When there are
only two equal blocks on each side, it is casy to determine
whether or no their breadth is sufficient
to prevent their both falling inwards by
describing round the triangle A B C
(Fig. 16), a segment of a circle,
by making D E vertical, and joining
A E, which must either coincide with
the diagonal A F, or be below it. If
there are more than two pieces on each
side, in order to determine the stability of any
joint A B (Fig. 17), let A C and D E be
horizontal, and I E vertical, draw DD B C,
make E H = E G, and H 1 horizontal and
equal to half A C; then if F I fall below B,
the etructure will not give way at the joint
A B. The demonstration may easily be de-
duced from the principle of the equality
of the horizontal thrusts in the case of an
cquilibrium @ and it may be shown that, if the aperture be
wquilateral. 15 common bricks on cach side will stand, but 16

A C
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will give way at the sixth joint from the summit. The stability
is however less considerable with respect to the second mode
of failure, in which the upper brick slides outwards, while all
below it fall inwards (Fig. 18). In this
case the angular motion of the two
portiops is initially equal, the points A
and B remaining fixed. The velocities
of the centres of gravity reduced to a
vertical direction are as the distances
CD, DE; in order therefore that there
may be an equilibrium without friction,
the weight of the upper portion must be to that of the lower as
DEto CD; and in all cases the force of AD, tending to
support DF, is to the weight of D F, acting at its centre of

gravity, a8 AG.CDtoFG.DE,oras AG. =1 to F G.

The friction of the upper block, of which the magnitude may be
determined in the manner already shiown, will act upon the whole
length of the arm F G, while the weight of D F acts only on the
length of half D E, consequently its effect must be considered as
increased in the ratio of D E to twice F G. Thus if we take the
example of an equilateral aperture, constructed with 8 common
bricks on each side, and without cement of any kind, C D will
be 9-3 inches, DE 2'7, and FG 21; hence the brick A will
produce immediately a force equivalent to the weight of 3-4
bricks, and by its friction, which is 5 of its weight, another
force equivalent to the weight of 7 more ; consequently the sum
of both will be fully adequate to the support of the 7 bricks
which form the lower portion of the structure. But if we make
the same calculation for 9 bricks, we shall find that they will
not stand without some external support.

It is obvious that in all these cases the addition of any load
at the summit of the structure would very materially increase
its stability, and that even a block, of sufficient magnitude to
fill up the angle only, would enable us considerably to extend
the base. It is also plain that an inclined facing of this kind is
not distinguished from an arch by the want of a key stone,
since the two middle blocks act nearly in the same manner as
if they were united, except when they are forced outwards by
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the pressure of the lower parts; and a centre is as necessary
for raising a facing of this kind, as if it were an arch of any
other form.
I am, Sir,
Your very obedient servant,

APSoPHUS.
17 Oct., 1807,

Postscript.—The equilibrium of the flattened arches, com-
monly placed over windows, may be determined in a similar
manner, the principles being the same as those which are em-
ployed in the construction of Fig. 11 and Fig. 13. Supposing
the blocks without friction and of equal height, if their divisions
converge to one point, the lateral thrust will be equal through-
out, and the whole will remain in equilibrium, provided that
the ends do not slide outwards. ‘ Fig. 19.

In order to find the breadth which Y

is within this limit, let the hori- S
zontal line A B (Fig. 19) pass
through the centre of gravity
of the blocks, draw any line
(B from the centre of divergence C, make BD AB join
CD, and let the vertical line BE meetit in E; then E F,
drawn to the intersection of the scmicircle E F G with the lower
termination of the blocks, will show the direction of the abut-
ment, which will afford an equilibrium: and C H parallel
to it will determine the greatest breadth that will stand. But
since the blocks thus disposed, and supporting a wall, cannot
slide away without displacing the superincumbent weight, the
whole wall may be considered as adding to the height of the
blocks, and the stability in every case that can occur in prac-
tice, must be complete: it is only necessary to reduce the
borizontal thrust as much as possible, and this must be done
by making the point C as near the blocks as convenient: the
thrust being equal to the weight of the portion A H, sup-
poring A C H half a right angle.  If we wish to estimate also
the effects of friction, let the segment E TG contain a right
angle, diminished by the angle of repose, then C K, parallel
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to E I, will be the direction of the abutment which will secure
the blocks from sliding outwards, with the assistance of the force
of friction. Generally however the obliquity must be much less
than this; and the resistance of the abutment becomes capable
of being exerted in the most favourable direction that its
friction will allow, that is, in a direction more nearly vertical
than the perpendicular to its surface, for example LM, ML N
being the angle of repose; and if we wish to have the thrust
cqual throughout, we must employ blocks of such a form that
their divisions may make, with the lines converging to C,

Fig.so. angles equal to MLN; this however would lead
us to make.the middle blocks of the form of lpver.te'd

wedges (Fig. 20), or at least to make their divi-
sions parallel : but it will be sufficient in practice
to cause the parts next the abutments to converge
to points somewhat nearer than the point of con-
vergence of the middle parts (Fig. 21) ; nor, indeed,
has this arrangement any material advantage over
the simpler form of lines converging to a single
centre.

From a consideration of these principles, we may derive
some useful inferences with respect to arches in general, espe-
cially such as are employed in buildings. The ohjects to be
attained in the construction of an arch are to diminish as much
as possible the horizontal thrust, and to secure the stability by
such an arrangement as requires the least size in the blocks
and firmness in the joints. The size of the blocks must be
such, that the curve of equilibrium, under the pressure ac-
tually produced by the walls, may be everywhere included
within their substance, and even without coming very near
their termination ; and the horizontal thrust will be less in pro-
portion as the curvature at the vertex is greater, that is, other
things being equal, as the arch is higher. Supposing the
height of the wall supported by the arch to be very consider-
able in proportion to that of the arch itself, the curve of equili-
brium must be very nearly a parabola: if the wall is raised
but little above the arch, it will approach to a segment of a
circle. In order therefore to find whether the size of the blocks




No. L. STRUCTURE OF COVERED WAYS. 189

is sufficient, describe a parabola through the summit and the
abutments ; and if it pass wholly within the blocks, they will
stand ; provided however that their joints are either perpen-
dicular to the curve, or are within the limits of the angle of
repoee on cither side of the perpendicular. But if the wall is
very low, and the arch flat, a segment of a circle will be more
correct than a parabola. Hence it is obvious, first, that a seg-
ment of a circle is a better form for an arch than an ellipsis of
equal height and span, although less pleasing to the eye, the
horizontal thrust being less : secondly, that for the same reason,
a Gothic or pointed arch is preferable to a Saxon or semicir-
cular arch, when its height is greater; and even when the
height is equal, an arch composed of two parabolic segments
meeting in the vertex is stronger than a semicircular arch : for,
supposing the wall very high, the depth of the arch stones of a
semicircular arch must be at least (4 of the span, in order that
the arch may stand, but that of the stones of a Gothic arch,
composed of two parabolic segments, may be less by one-
twentieth ; the parabola of equilibrium touching in this case
the internal limit of the arch at 2 of its whole height above
the abutments. If, however, the arch is flatter, a segment of a
circle will be somewhat stronger than a pointed arch composed
of parabolic or elliptical segments. When the arch is higher, it
is obvious that a single circular curve is no longer applicable :
and in this case, it is of little consequence whether the segments
be circular or parabolic, cither of these forms approaching suffi-
ciently near to the curve of equilibrium, and both producing
equally a much smaller horizontal thrust than a semicircular
arch.
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No. LI.

REMARKS ON

THE FRICTION OF WHEELWORK,

AND ON THE FORMS BEST SUITED FOR TEETH.
From Buchanan’s ¢ Essay on Wheelwork,” 8vo. Glasgow, 1809.

IN A LETTER FROM DR, YOUNG TO THE AUTHOR.

I nave been considering your observations on the dif-
ference of the friction, accordingly as the teeth touch before or
after the line of centres: at first I was disposed to doubt of the
fact ; but upon more mature examination, I found that, like
many other practical observations, they went beyond the scope
of the doctrines of theoretical writers. I cannot, however, per- -
fectly agree with you as to the explanation of the fact: but I
will state to you briefly my opinion on the subject, not having
leisure at present to enter into a more ample discussion.

The magnitude of the friction has usually been estimated
by the relative velocity of the surfaces concerned; a mode
of calculation which, as I have observed in my Lecture on
Machinery, is only so far correct as it shows the comparative
effect of a given friction in retarding the machine. But in fact
the primitive friction itself is liable to variation, according to
the obliquity of the surfaces: for since the friction is nearly
proportional to the mutual pressure, it will be greater or less as
the direction of these surfaces is more or less inclined to the
radii, the force of rotation being supposed to be given: and
what is of still more immediate importance to the resolution of
the difficulty in question, the direction of the force by which the
one wheel acts on the other, is not to be considered as perpen-
dicular to the surface of the teeth, but as oblique to it, being
so situated as to oppose the joint result of the direct resistance
and the friction ; that is, as being inclined to the surface in a
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certain constant angle, which a late anonymous writer* has called
the angle of repoee, and which is equal to the inclinacion of a
plane, on which one of the substances concerned would begin to
slide on the other by its gravitation.

Let the tooth A impel the tooth
B with the given force AC, per-
pendicular to the common surface
of the teeth; make C A D equal
to the angle of repose, then the
force must act in the direction AD,
and making CD parallel to the
radius A E, A D will be the actual
pressure: and then drawing DF
parallel to the radius AG, AF
will be the effective force in the
direction A C, and F C will be the
loss by friction. Again, if B im-
pel A, the angle of repose must
lie on the other side of A C, and
C H must be parallel to A G, and ‘
HI to AE, and the friction in this case will be I C, which is
obviously less than F C.

Hence we may easily calculate the magnitude of the resist-
ance FC or IC produced by friction, calling the force A C

unity ; for C D becomes n.CAD nd FC = CD . Sn-CDF

G

sin. ADC? #in.CFD =
sin CAD  sin.CDF _  sin.CAD sin.GAE .
4o, ADC ~ &in.CFD — sn.(CAE+CAD) = snGac’ andinthe same
manner 1 C = %n-CAD _ sin.CHI _ sin.CAD #in.GAE,

#in,AHC * sin.CTH — #n.(GACFCAD) ~ sin.FAC
Both these quantitics vary ultimately as the angle formed by
the radii, and vanish when the point of contact is in the line of
the centres ; and in this case the common theory agrees with
this calculation. When C A E is always a right angle, as in

the epicycloidal tooth commonly recommended, the friction F
sin.GAE

varies in the different poeitions of the teeth as 57, or as cot.

G A C: that is, if AK be made constant, as K L.
® Sev the last article, No_ L., p. 182
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Since therefore it is demonstrable, that the friction is
always greater in approaching the line of the centres than at an
equal distance beyond it, it must obviously be desirable that the
contact should be rather after than before the passage of
the teeth over that line, although it is better that it should be
at a small distance before, than at a much greater distance
beyond it. Hence, the impelling teeth ought to be of such
a form as to accelerate the motion of the impelled a little before
and a little more after the passage of the line of the centres,
and then to retard it again, so that the next tooth may succeed
to a similar operation.

A wheel acting on a trundle with cylindrical staves has
in this respect an advantage over two wheels with teeth,
since the curve fitted for impelling the trundle is adapted only
to act on it beyond the line of the centres. This curve may
however be formed more casily, and at the same time more ad-
vantagcously, than by the method which has hitherto been
recommended : for if we employ an epicycloid described by the
rolling of a circle, which would just touch the internal surface
of all the staves of the trundle, on the circumference of
the wheel, the trundle will at first be accelerated a very little,
and will then be allowed to fall back from each tooth to the
succeeding one, soon after its passage over the line of the
centres. The same form will also answer very well when the
trundle is to impel the wheel, although this mode of action
produces a greater friction than the former.

A similar advantage may be obtained in teeth of any other
form, by finishing them in such a manner as to project a very
little beyond the regular outline, at the point which is in-
tended to come into contact a little beyond the line of the
centres. Such a corrected outline may be described at once,
if it be required. If the tooth is to be formed into an involute
of a circle, having fitted a thread or fine wire to the circumfer-
ence of the wheel, find the point of contact at the instant when
the end of the wire is describing the part of the tooth which is
to act at or a little before the line of the centres; cut off from
the wheel, beyond this point, an arc equal to the distance
of the centres of two adjoining teeth, and fix a pin in the tan-
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gent at the same point, that is. in the continuation of the part
of the wire which is unrolled, at such a distance as just to
stretch the part which is left loose by the removal of the arc;
the pin thus fixed, and the remainder of the circle, will serve as
bases for continuing the evolution of the wire and the descrip-
tion of the tooth. 'The same position of the wire will show the
outline of a basis proper for describing, by means of a circle
rolled on it, the curve which must be substituted for the form
of any epicycloidal tooth, which might have been described by
causing the same circle to roll on the simple circumference
of the wheel as a basis: the curved part of the tooth beginning
in this case at the point of contact first mentioned.

The advantage of dividing the pressurc among several
teeth ought not to be purchased at the expense of an increase
of friction, since the property of greater durability may be
obtained in an equal degree by simply making the wheels
thicker, without materially adding to the friction; and in fact
although the pressure on each tooth may be lessened by
dividing, yet its duration is increased momentarily in the same
proportion.

It has been remarked that the form of the involute of
a circle is not immediately deducible from the general prin-
ciple of Camus ; and the remark is strictly true, since the curves
formed, according to that principle, from two contiguous circles
as bases, would not act on ecach other without a further
separation of the centres, which would render the demonstration
inadequate. But I bave observed in the additions to my second
volume (Lectures, p. x.), that the principle may be extended
to any other curves, as well as circles and straight lines: and
if we employ an equi-angular spiral instead of « straight line,
we shall have the involutes exactly as they are recommended
for practice.

VOL. 1. (3]
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No. LIL

SELECTIONS FROM THE ARTICLE
]
BRIDGE,

In the Supplement to the Encyclopadia Britannica.

WRITTEN INX 1816.

-THE mathematical theory of the structure of bridges has been
a favourite subject with mechanical philosophers ; it gives scope
to some of the most refined and elegant applications of science
to practical utility ; and at the same time that its progressive
improvement exhibits an example of the very slow steps by
which speculation has sometimes followed execution, it enables
us to look forwards with perfect confidence to that more desi-
rable state of human knowledge, in which the calculations of
the mathematician are authorised to direct the operations of
the artificer with security, instead of watching with servility the
progress of his labours. .

Of the origin of the art of building bridges a sketch has been
given in the body of the Encyclopedia; the subject has been
re-discussed within the last twenty years by some of the most
learned antiquaries, and of the most elegant scholars of the age;
but additions still more important have been mnade to the scien-
tific and practical principles on which that art depends ; and the
principal information, that is demanded on the present occasion,
will be comprehended under the two heads of physico-mathe-
matical principles subservient to the theory of this department
of architecture, and a historical account of the works either
actually executed or projected, which appear to be the most
deserving of notice. The first head will contain three sections,
relating respectively (1) to the resistance of the materials em-
ployed, (2) to the equilibrium of arches, and (3) to the effects
of friction; the second will comprehend (4) some details of
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earlier history and literature, (5) an account of the discussions
which have taken place respecting the improvement of the port
of London, and (6) a description of some of the most remark-
able bridges which have been erected in modern times.*

SecrioN 1.— Of the Resistance of Materials.

The nature of the forces on which the utility of the substances
employed in architecture and carpentry depends, has been
pretty fully investigated in the article STRENGTH of the Ency-
clopmedia ;t and the theory has been carried somewhat further, in
the investigations of a late writer] concerning Cohesion and
Passive Strength of Materials. Much, however, still remains
to be done; and we shall find many cases, in which the prin-
ciples of these calculations admit of a more immediate and
accurate application to practice than has hitherto been sup-
poeed. It will first be necessary to advert to the foundation of
the theory in its simplest form, as depending on the attractive
and repulsive powers, which balance each other, in all natural
substances remaining in a permauent state of cohesion, whether
as liquids, or as more or less perfect solids. .

A.—In all homogeneous solid bodies, the resistances to exten-
sion and compression must be initially equal, and proportional to
the change of dimensions.

The equilibrium of the particles of any body remaining at
rest, depends on the equality of opposite forces, varying accord-
ing to certain laws; and that these laws are continued without
any abrupt change, when any minute alteratioh takes place in
the distance, is demonstrated by tleir continuing little altered
by any variation of dimensions, in consequence of an increase
or diminution of temperature, and might indeed be at once
inferred as highly probable, from the gencral principle of con-
tinuity observed in the laws of nature. We may, therefore,
always assume a change of dimensions so small, that, as in all
other differential calculations, the elements of the curves, of
which the ordinates express the forces, as functions of, or as

® The last of these @it sections has not been reprinted.— Note by the Editor,
¢ Wirtten by Professor Robison, $ Dr. Yoténg.
o
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depending ou, the distances as abscisses, may be considered as
not sensibly differing from right lines crossing each other, if the
curves be drawn on the same side of the absciss, in a point
corresponding to the point of rest, or to the distance affording
an equilibrium ; so that the elementary finite differences of the
respective pairs of ordinates, which must form, with the portions
of the two curves, rectilinear triangles, always similar to each
other, will always vary as the lengths of the elements of
the curves, or as the elements of the absciss, beginning at the
point of rest ; and it is obvious that these differences will repre-
sent the actual magnitude of the resistances exhibited by the
substance to extension or compression. (Plate, fig. 1.)

It was on the same principle that Bernoulli long ago observed,
that the minute oscillations of any system of bodies, whatever
the laws of the forces governming them might be, must ultimately
be isochronous, notwithstanding any. imaginable variation of
their comparative extent, the forces tending to bring them back
to the quiescent position being always proportional to the dis-
placements; and so far as the doctrine has been investigated
by experiments, its general truth has becn amply confirmed ;
the slight deviations from the exact proportion, which have been
discovered in some substances, being far too unimportant to
constitute an exception, and merely tending to show that these
substances cannot have been perfectly homogeneous, in the
sense here attributed to the word. VWhen the compression or
extension iz considerable, there may indeed be a sensible devi-
ation, especially in fibrous or stratified substances; but this
irregularity by no means affects the admissibility of any of the
conclusions which will be derived from this proposition.

B.— The strength of a block or beam must be reduced to one
half, before its cohesive and repulsive forces can both be-called
into action.

We must suppose the transverse sections of the body to
remain plane and perpendicular to the axis, whatever the point
may be to which the force is applied, a supposition which will
be correctly true, if the pressure be made by the intervention of
a firm plate attached to each end, and whichs perfectly admis-
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sible in every other case. Now if the terminal plates remain
parallel, it is obvious that the compression or extension must be
uniformly distributed throughout the substance, which must
“happen when the original force is applied in the middle of the
block ; the centre of pressure or resistance, collected by the
plate, acting like a lever, being then coincident with the axis.
But when the plates are inclined, the resistance depending on
the compression or extension will be various in different parts,
and will always be proportional to the distance from the neutral
puint, where the compression ends and the extension begins, if
the depth of the substance is sufficient to extend to this point ;
consequently the forces may always be represented, like the
pressure of a fluid, at different depths, by the ordinates of a
triangle ; and their result may be considered as concentrated in
the centre of gravity of the triangle, or of such of its portions
as are contained within the depth of the substance ; and when
both extension and compression are concerned, the smaller force
way be considered as a negative pressure, to be subtracted from
the greater, as is usual when any other compound forces are
supposed to act on a lever of any kind. Now, when the neutral
puint is situated in one of the surfaces of the block, the sum of
all the forces is represented by the area of the triangle, as it is
by that of the parallelogram when the plates remain parallel,
and these areas being in either case equivalent to the same ex-
ternal force, it is obvious that the perpendicular of the triangle
must be equal to twice the height of the parallelogram, indicat-
ing that the compression or extension of the surface in the one
case ix twice as great as the equable compression or extension
in the other; and since there is always a certain degree of
compression or extension which must be precisely sufficient to
crush or tear that part of the substance which is immediately
exposed to it, and since the whole substance must in gencral
give way when any of its parts fail, it follows that the strength
is ouly half as great in the former case as in the latter.  And
the centre of gravity of every triangle being at the distance of
one-thind of its height from the base, the external force must be
appiied in order to produce such a compression or extension, at
the distance of one ziath of the depth from the axis ; and when
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its distance is greater than this, both the repulsive and cohesive
forces of the substance must be called into action, and the
strength must be still further impaired. (Plate, fig. 2.)

C.— The compression or extension of the azis of a block or
beam is always proportional to the force, reduced to the direction
of the azis, at whatever distance it may be applied.

We may suppose one of the inflexible plates, attached to the
extremities of the block, to be continued to the given distance,
and to act as a lever held in equilibrium by three forces, that
is, by the cohesive and repulsive resistances of the block, and
the external force; and it is obvious that, as in all other
levers, the external force will always be equal to the difference
of the other two forces depending on the compression and
extension, or to the mean compression or extension of the
whole, which must also be the immediate compression or ex-
tension of the middle, since the figure representing the forces
is rectilinear. And the effect will be the same, whatever may
be the intermediate substances by which the force is impressed
on the block, whether continued in a straight line or otherwise.
When the force is oblique, the portion perpendicular to the
axis will be resisted by the lateral adhesion of the different
strata of the block, the compression or extension being only
determined by the portion parallel to the axis; and when it is
transverse, the length of the axis will remain unaltered. But
the line of direction of the original force must always be con-
tinued till it meets the transverse section at any point of the
length, in order to determine the nature of the strain at that
point.

D.— The distance of the neutral point fromthe axis of a block
or beam is to the depth, as the depth to twelve times the distance
of the force, measured in the transverse section.

Calling the depth a, and the distance of the neutral point
from the axis z, the resistances may be expressed by the squares
of 4a 4 z and § a - 2, which are the sides of the similar
triangles denoting the compression and extension (Prop. B.);
consequently, the difference of these squares, 2 az, will repre-
gent the external force (Prop. C.). But the distunce of the
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centres of gravity of the two triangles must always be § a ; and,
by the property of the lever, making the centre of action of the
greater resistance the fulcrum, as the external force is to the
smaller resistance, 8o is this distance to the distance of the force
from the centre of action of the greater resistance; or 2 az:

. aa a 2\ ., . . .
Ga+ 2 =3a: (F-5+;);: and adding to this the dis
tance of the centre of action from the axis, which must be 4 a—
d(dat2)=)a—-}z, we have%— for the distance of the force

from the axis ; whence, calling this distance y, z = T‘% .

E.— The power of a given force to crush’a block, is increased,
by its removal from the axis, supposing its direction unaltered,
in the same proportion as the depth of the block is increased by
the addition of siz times the distance of the point of application
of the force, measured in the transverse section.

Since the compression or extension of the axis is invariable,
whatever the distance of the force may be, that of the nearest
surface must be as much greater, by the properties of similar
triangles, as the half depth, increased by the distance of the
neutral point, is greater than that distance itself, that is, in the
ratio of a + 6 y to a, since zistoa asa to 12 y; (Prop. D.)
and to § a as a to 6 y : and the strength is reduced in the same
proportion, as the partial compression or extension, by the
operation of & given force, is increased. (Plate, fig. 3.)

F.— The curvature of the neutral line of a beam at any point,
produced by a given force, is proportional to the distance of the line
of direction of the force from the given point of the axis, whatever
that direction may be.

Since the distance z of the neutral point from the axis is
inversely as y, the distance of the force, and the radius of
curvature, or the distance of the intersection of the planes of
the terminal plates from the neutral point, must be to the
distance z as the whole length of the axis is to the alteration of
* that length produced by the compression or extension, it
follows that the radius of curvature must be inversely as the
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distance y, and inversely also as the compression, and the cur-
vature itself must be conjointly as the force and as the distanee
of its application. If the direction of the force be changed,
aud the perpendicular falling from the given point of the axis
on the line of the force be now called y, the distance of the
force from the axis measured in the transverse section will be
increased by the obliquity exactly in thc same ratio as its effi-
cacy is diminished, and the curvature of the neutral line will
remain unaltered ; although the place of that line will be a
little varied, until at last it coincides with the axis, when the
force becomes completely transverse ; and the radius of curva-
ture of the axis will always be to that of the neutral line
as the acquired to the original length of the axis. (Plate,
fig. 4.)

G.—The radius of curvature of the neutral line is to the
distance of the neutral point as the original length of the azxis to
the alteration of that length; or as a certain given quantity
to the external force: and this quantity has been termed the
Modulus of elasticity.

cz=M: Mz _Maa
Orr:2=M: f,and r 7 =137

preceding demonstration; y being the distance of the line of
the force from the given point, whatever its direction may be.

as is obvious from the

H.— The flexibility, referred to the direction of the force, is
expressed by unity, increased by twelve times the square of the
distance, divided by that of the depth.

Making the alteration of the axis unity, the corresponding

change at the distance y will be to 1 as 2 4y to z, or as 1 4 —’z—
to 1, and will consequently be equal to 1 4 -]—:‘;? . (Prop. D.)

When the direction of the force becomes oblique, the actual
compression of the axis is diminished, but its effect referred to
that direction remains unaltered.

L.— The total compression of a narrow block, pressed in the
direction of one of its diagonals, ts twice as great as if the same °
Jorce were applied in the direction of the axis.
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This proposition affords a simple illustration of the application
of the preceding one. Calling the length of any portion of the
axis z, beginning from the middle, and neglecting the obliquity,
the distance of the force may be called y = nz, and the compres-

12 .
.V.V, its

sion in the line of the force being everywhere as 14+—<

fuxion will be dz + dz 27, and the fluent z + 2=, which,

when y = } a, becomes z+ z, which is twice as great as if y
were always = 0. But if the breadth of the block were con-
siderable, so that it approached to a cube, the compression
would vary according to a different law, each section parallel
to the diagonal affording an equal resistance, and the exact
solution of the problem would require an infinite series for

expressing the value of /5 wrdz.

K.—If a solid bar have its azis curved a little into a circular
Jorm, and an external force be then applied in the direction of the
chord, while the extremities retain their angular position, the
greatest compression or extension of the substance will ultimately

be to the mean compression or extension which takes place in the
direction of the chord as 1 4 1:— to l+—:g’£—; a being the
depth of the bar, and h the actual versed sine, or the height of the
arch.

We must here separate the actions of the forces retaining the
ends of the bar into two parts, the one simply urging the bar in
the direction of the chord, and the other, which is of a more
complicated nature, keeping the angular direction unaltered ;
and we must first calculate the variation of the angular situation
of the ends, in consequence of the hending of the bar by the
first portion, and then the strain required to obviate that change,
by means of a force acting in the direction of the middle of the
bar, while the ends are supposed to be fixed. If cach half of
the bar were rectilinear, these two strains would obviously be
equal, and would neutralize each other in the middle of the
halves, which might be considered as the meeting of the ends
of two shorter pieces, acting transversely or obliquely on each
other, without any strain ; the curvature produced by the whole
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strain being elsewhere as the distance from the line joining
these points. But, since the bar is supposed to be curved, it
becomes necessary to determine the place of these neutral
points, by calculating the change of its angular position
throughout its extent.

Considering, first, the middle of the bar as fixed, and calling
the angular extent of the variable arc z, beginning from the
middle, and the radius 7, the ordinate y, or the distance of the
arc from the chord, will be r cos. z—b, b being the cosine of the
whole arc; and the fluxion of the change of the angular situa-
tion, being as the strain and the fluxion of the arc conjointly, will
be expressed by pr cos. zdz —pbdz, of which the fluent is pr sin. z
~ pbz. In the second place, the curvature derived from the
force acting between the two halves, when the ends are consi-
dered as fixed points, will be as r —r cos. z, and the fluent of the
change of angular situation may be called gre—grsin. z; and at
the end, when z becomes equal to ¢, the whole extent of the
arc, these two deviations must destroy each other, since the
positions of the middle and of the ends remain unaltered; conse-

quently prsin. ¢ — pbe = gre —grsin. ¢, whence f—; = ::;':_nb: , and the

exact proportion of p to ¢ may be found, by means of a table of
sines. But when the arc is small, sin.c being equal toc— } &+
1

20
now r—b, the versed sine of the arc, becomes ultimately % rc®,
and (r—b) ¢ = 4rc*: thereforep : g= 4 : =4 . 1; that
is, the strain at the middle, expressed by p, must be half as
great as the strain at the ends, expressed by g: consequently,
when the force is considered as single, the distance d of the line
of its direction from the summit must ultimately be one-third
of the versed sine or height.

Now if we call any portion of the chord z, we have for the
corresponding value of y, the distance from the line of direction
of this force, 4/ (r*—z*)—d, and for the fluxion of the compres-

sion or extension in the direction of the chord, ds (l + g:-: )

«eoy re—rsin.cis } rc*, and rsin.c—be=(r—>) c—3 rc* ;

’

which will be true for both portions of the bar, whether y be
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positive or negative; but y* = 7* —2* 4 d*— 2 y (P — 2*),
and the ﬂuentbeoomesz-}-g(;’z -4+ d*x - 2d [ arc

sin. % - :J(r‘-x’)]). When the arc is small, calling
the whole versed sineh,wehavey-}h—;;,mdy"—“"'

% + 35 and the fluent is =+ 22 (wz -E4+ 2%); but
when z becomes equal to the semichord ¢, % being ;c—r, the ex-
pression becomes ¢ +£(3%—%+2%ﬂ)—c + %ﬁ,:c
+ %’c » which shows the compression or extension in the line
of the chord, while ¢ expresses that which the bar would have
undergone if it had been straight, and the force had been im-
mediately applied to the axis ; the actual change being greater
in the proportion of 1 + %to 1.

The greatest strain will obviously be at the ends, where the
distance from the line of direction of the force is the greatest,
the compression or extension of the surface being here to that
of the axis, as @ 4 6y to a (Prop. E)oras 1 + %to 1; con-

sequently the compression or extension in the line of the
chord is to the greatest actual change of the substance as 1 +

16kA 4A
s 01+ 3

Thus if the depth a were 10 feet, and the height or versed
sine 4 = 20, the radius being very large, the whole compression
of the chord would be to the whole compression of a similar
substance, placed in the direction of the chord, as 5.267 to 1;
and the compression at the surface of the ends would be to the
compression of the axis there as 9 to 1; and disregarding the
insensible obliquity, this compression may be considered as
equal throughout the bar; so that the compression at the ends
will be to the compression of the chord as 9 to 5.267, or as 17
to 10.

Suppusing, for example, such a bar of iron to undergo a
change of temperature of 32° of Fabrenheit, which would natu-
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rally cause it to expand or contract about ss'rv in all its dimen-
sions; then the length of the chord, being limited by the
abutments, must now be supposed to be altered s+ by an
external force ; and, at the extremities of the abutments, the
compression and extension of the metal will amount to about
+o'sv ; a change which is equivalent to the pressure of a column
of the metal about 3300 feet in height, since M, the height of
the modulus of elasticity, is found, for iron and steel, to be
about 10,000,000 feet ; and such would be the addition to the
pressure at one extremity of the abutment, and its diminution
at the other, amounting to about five tons for every square inch
of the section, which would certainly require some particular
precaution, to prevent the destruction of the stones forming the
abutment by a force so much greater than they are capable of
withstanding without assistance. Should such a case indeed
actually occur, it is probable that the extremities would give
way a little, and that the principal .pressure would necessarily
be supported nearer the middle, o that there would be a waste
of materials in a situation where they could co-operate but im-
perfectly in resisting the thrust ; an inconvenience which would
not occur if the bar were made wider and less deep, especially
towards the abutments.

SectioN 11.— Of the Equilibrium of Arches.

We may now proceed to inquire into the mode of determining
the situation and properties of the curve of equilibrium, which
represents, for every part of a system of bodies supporting each
other, the general direction of their mutual pressure ; remem-
bering always that this curve is as much an imaginary line, as
the centre of gravity is an imaginary point, the forces being no
more actually collected into such a line than the whole weight
or inertia of a body is collected in its centre of gravity. Indeed,
the situation of the curve is even less definite than that of the
centre of gravity, since in many cases it may differ a little
according to the nature of the co-operation of the forces which
it is supposed to represent. In reality, every gravitating atom
eutering the structure must be supported by some forces con-
tinued in some line, whether regular or irregular, to the fixed



No. LIIL ON THE STRUCTURE OF BRIDGES. 205

points or abutments, and every resisting atom partakes, in
a mathematical sense, either positively or negatively, in trans-
mitting a lateral pressure where it is required for supporting
any part of the weight: and when we attempt to represent the
result of all these collateral pressures by a simple curve, its
situation is liable to a slight variation, according to the direc-
tion in which we suppose the co-operating forces to be collected.
If, for instance, we wished to determine the stability of a joint,
formed in a given direction, it would be necessary to consider
the magnitude of the forces acting throughout the extent of the
joint in a direction perpendicular to its plane, and to collect
them into a single result, and it is obvious that the forces,
represented by the various elementary curves, may vary very
sensibly in their proportion, when we consider their joint opera-
tion on a vertical or on an oblique plane; although if the depth
of the substance be inconsiderable, this difference will be wholly
imperceptible, and in practice it may generally be neglected
without inconvenience ; calculating the curve upon the suppo-
sition of a series of joints in a vertical direction. If, however,
we wish to be very minutely accurate, we must attend to the
actual direction of the joints in the determination of the curve,
and must consider, in the case of a bridge, the whole weight of
the structure terminated by a given arch stone, with the mate-
rials which it supports, as determining the direction of the curve
of equilibrium where it meets the given joint, instcad of the
weight of the materials terminated by a vertical plane passing
through the point of the curve in question, which may some-
times be very sensibly less ; this consideration being as neces-
sary for determining the circumstances under which the joints
will open, as for the morc imaginary possibility of the arch
stones sliding upwards or downwards. But we may commonly
make a sufficiently accurate compensation for this difference, by
supposing the specific gravity of the materials producing the
pressure, and the curvature of the line which terminates them,
to be a little increased, while the absciss remains equal to that
of the curve of equilibrium intersecting the joints.
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L.—If two equal parallelepipeds be supported each at one end,
and lean against each other at the other, so as to remain horizon-
tal, the curve of equilibrium, representing the general effect of the
pressure transmitted through them, will be of a parabolic form.

The pressure of the blocks where they meet, will obviously be
horizontal, but at the other ends it will be oblique, being the
result of this horizontal pressure and of the whole weight of each
block. And if we imagine the blocks to be divided into any
number of parts, by sections parallel to the ends, which is the
only way in which we can easily obtain a regular result, it is
evident that the force exerted at any of these sections, by the
external portions, must be sufficient to support the lateral thrust
and the weight of the internal portions ; and its inclination must
be such that the horizontal base of the triangle of forces must
be to the vertical perpendicular as the lateral thrust to the
weight of the internal portion; or, in other words, the lateral
thrust remaining constant, the weight supported will be as the
tangent of the inclination. But calling the horizontal absciss
z, and the vertical ordinate y, the tangent of the inclination will

be :—i—; which, in the case of a parallelepiped, must be propor-

tional to the distance z from the contiguous ends; and z =

%; consequently zdz = mdy, and } 2* = my, which is the

equation of a parabola. It is usual in such cases to consider
the thrusts as rectilinear throughout, and as meeting in the
vertical line passing through the centre of gravity of each block ;
but this mode of representation is evidently only a convenient
compendium.

If the blocks were united together in the middle, so as
to form a single bar or lever, the forces would be somewhat
differently arranged ; the upper half of the bar would contain
a series of elementary arches, abutting on a series of similar
elementary chains in the lower half, so as to take off all lateral
thrust from the supports at the ends.

With respect to the transverse strains of levers in general, it
may be observed, that the most convenient way of representing
them is to consider the axis of the lever as composed of a series
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of elementary bars, bisected, and crossed at right angles, by as
many others éxtending across the lever, or rather as far as two-
thirds of the half depth on each side, where the centre of
resistance is situated. The transverse force must then be
transmitted unaltered throughout the whole system, acting in
contrary directions at the opposite ends of each of the elemen-
tary bars constituting the axis; and it must be held in equili-
brium, with respect to each of the centres, considered as a
fulcrum, by the general result of all the corpuscular forces
acting on the longer cross arms; that is, by the difference of
the compression or extension on the different sides of the arms.
This difference must therefore be constant; and in all such
cases the strain or curvature must increase uniformly, and its
fluxion must be constant ; but if the transverse force be variable,
as when the lever supports its own weight, or any further ex-
ternal pressure, the fluxion of the curvature must be proportional
to it. Now the transverse force, thus estimated, being the sum
of the weights or other forces acting on either side of the given
point, the additional weight at the point will be represented by
the fluxion of the weight, or by the second fluxion of the strain
or curvature, which is ultimately as the fourth fluxion of the
ordinate. Also, the fluxion of the strain being as the whole
weight on each side, it follows that when the strain is a maxi-
mum, and its fluxion vanishes, the whole weight or the sum of
the positive and negative forces on either side, must also vanish;
as Mr. Dupin bas lately demonstrated in a different manner.

M.—1In every structure supported by abutments, the tangent of
the inclination of the curve of equilibrium to the horizon is pro-
portional to the weight of the parts interposed between the given
point and the middle of the structure.

The truth of this proposition depends on the equality of the
horizontal thrust throughout the structure, from which it may
be immediately inferred, as in the last proposition. The mate-
rials employed for making bridges are not uncommonly such, as
to create a certain degree of lateral pressure on the outside of
the arch ; but as there must be a similar and equal pressure in
a contrary direction against the abutment, its cffects will be
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comprehended in the determination of the point at which the -
curve springs from the abutment, as well as in the direction of
the curve itself : so that the circumstance does not afford any
exception to the general truth of the law. It is, however,
seldom necessary to include the operation of such materials in
our calculations, since their lateral pressure has little or no
effect at the upper part of the arch, which has the greatest in-
fluence on the direction of the curve; and it is also desirable
to avoid the unnecessary employment of these soft materials,
because they tend to increase the horizontal thrust, and to raise
it to a greater height above the foundation of the abutment.

We have therefore generally frdz=mt=m :—':, w being the

height of uniform matter, pressing on the arch at the horizontal
distance z from the vertex, ¢ the tangent of the inclination of
the curve of equilibrium, y its vertical ordinate, and m a quan-
tity proportional to the lateral pressure, or horizontal thrust.

N.— The radius of curvature of the curve of equilibrium is
inversely as the load on each part, and directly as the cube of the
secant of the angle of inclination to the horizon.

The general expression for the radius of curvature is r =

d%z—g;; and here, since mdy = dzfwdz, dz_being constant,
(dz m

md® = w (dr)®; but dz being =dz v/ (1 + &), Ty =

4+ *) and 7 = 3(1 + )}, and m being constant, r is in-

versely as the load w, and directly as the cube of the secant
& (1 + #). The same result may also be obtained from a
geometrical consideration of the magnitude of the versed sine
of the elementary arc, and the effect of the obliquity of the
pressure ; the one varying as the square of the secant, the
other as the secant simply.

O.—Consequently, if the curve be circular, the load must be
everywhere as the cube of the secant.

P.—1If the curve of equilibrium be parabolic, the load must be
uniform throughout the span.
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(Prop. L.) The uniformity of the load implies that the supe-
rior and inferior terminations of the arch, commonly called the
extrados and intrados, should be parallel : but it is not necessary
that either of them should be parabolic, unless we wish to keep
the curve exactly in the middle of the whole structure. When
the height of the load is very great in proportion to that of
the arch, the curve must always be nearly parabolic, because
the form of the extrados has but little comparative effect on the
load at each point.

A parabola will therefore express the general form of the
curve of equilibrium in the flat bands of brick or stone, com-
monly placed over windows and doors, which, notwithstanding
their external form, may very properly be denominated flat
arches. But if we consider the direction of the joints as per-
pendicular to the curve, it may easily be shown, from the pro-
perties of the wedge, that they must tend to a common axis,
in order that the thrust may be equal throughout; and the
curve must be perpendicular to them, and consequently circu-
lar ; but the difference from the parabola will be wholly incon-
siderable.

Q.—For a horizontal extrados, and an intrados terminated by
the curve itself, which, however, s a supposition merely theoretical,

: : y+4/(yy—aa)
the equation of the curve is z = o/ mHL=——"—,

Since in this case w =y (Prop. M.), we have fydr =m
:{; and md'y = y (dx)*; whence, multiplying both sides by

dy, we have mdyd’y = ydy (dz)*; and, taking the fluent,
$m (dy)* = 4y* (dr)?, and mf* = y*, which must be corrected
by making y = @ when ¢ vanishes, so that we shall have

mf =y —a,andy = v (a® + mt®). Butsiuce:l=t=

J(”;“) dzr =dy J(” s and r = ¢ mun(J+J[3f—a’ )

— J/muwa; whence all the points of the curve may be deter-

mined by means of a table of logarithms. But such a calcula-

tion is by no means so immediately applicable to practice, as

has generally been supposed ; for the curve of equilibrium will
VOL. 1L P
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always be so distant from the intrados at the abutments, as to
derange the whole distribution of the forces concerned.

R.—For an arch of equable absolute thickness throughout
its length, the equation is z =4/ (y* — m') and z = mHuL
y+ /gy - mm)

m

The weight of any portion of the half arch being represented

by its length z, we have z = m:—i; but dz=dy + (1 +

(E)9=dy v (1 +22), and dy e fu) - e
22z

of which the fluent is 4/ (2* + m*), requiring no further correc-
tion than to suppose y initially equal to m ; and we have z =

v (y* — m*). Again,since dz = dz v/ (l + :T:) we find in

d
the same manner dz = J(—':—:_—Ji, and z = mHL (z+J[mm
+ 22z : — mHLmM = mHL z——:—y This curve will, therefore,

in some cases, be identical with that of the preceding proposi-
tion. It is commonly called the catenaria, since it represents
the form in which a perfectly flexible chain of equable thick-
ness will hang by its gravity.

S.—1If the load on each point of an arch be expressed by the
equation w = a + bz*, the equation for the curve of equilibrium
will be my = } az® + 5 bt

Since the whole load f wdz is here ar + § b2°, we have

d . .

m d% = az + § b2*, (Prop. M.) and my = } a2* + %ba:.

This expression will, in general, be found sufficiently accurate
for calculating the form of the curve of equilibrium in practical
cases; and it may easily be made to comprehend the increase
of the load from the obliquity of the arch-stones. The ordinate
¥, at the abutment, being given, the value of m may be deduced
from it : and since at the vertex my is simply jas*, the radius

»n

of curvature r will here be = = =
2y a
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T.—1f we divide the span of an arch into four equal parts,
asd add to the weight of one of the middle parts one-sixth of its
difference from the weight of one of the extreme parts, we shall
Aarr a reduced weight, which will be to the lateral thrust as the
Aeight of the arch to half the span, without sensible error.

The weight of the half arch being expressed by az + § b23,
when z is equal to the whole span, if we substitute } = for z,

it will become § ar + 5; &% for one of the middle parts,
leaving 4 az + 214 b2 for the extreme part, which gives
}.b.r' for the difference of the parts, and } of this, added
to the former quantity, makes it } ar + l—lgb.r‘: but since

1
Yar + 502
my = §ar + f‘i bs!, dividing by mz, we have ¥ - ._._m_”_

It is also obvious, that if we subtract, instead of adding, one
sixth of the difference, we have 4 ax; and dividing by % z, we

obtain a, and thence r = E m being previously found by the
proposiiion.

U.—When the load is terminated by a circulur or elliptical
arc, w=a+nb—ns (P~ 2), and my = % (a + b)) 2
~4nPrarcsive; — AV (P -2+ in@ -y
i nlt.

The whole load /wdz is here az 4+ nbr — % al® arc sine

i — ¥ V(I — 2%); and hence my = % az® + } nbs® — $ulis

arc sine E-}- Anb -4 V(BB - 2) + (P - 2:')‘
- i nt? (Prop. M.) And the radius of curvaturc at the
sertex will again be s When the curve is circular, the axes

of the ellipsis being equal, n = 1.

If the extrados and intrados are concentric, the calculation
requires us to take the difference between the results determin-
ing the weight for each curve ; but it will commonly be equally

accurate in such a case, to consider the depth of the load
p2
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as uniform, at least when the joints are in the direction of the
radii.

X.— The abutment must be higher without than within, by a
distance, which is to its breadth, as the horizontal distance of the
centre of gravity of the half arch from the middle of the abut-
ment is to the height of the middle of the key-stone above the same
point.

This proposition follows immediately from the proportion of
the horizontal thrust to the weight, determined by the property
of the lever: the one acting at the distance of the height of the
arch from the fulcrum, and the other at the distance of the
centre of gravity from the abutment, so as to balance each
other ; and the oblique direction of the face of the abutment
being perpendicular to the thrust compounded of these two
forces. The same rule also serves for determining the proper
position of the abutment of a beam or rafter of any kind, in
order that it may stand securely, without the assistance of
friction. But for a bridge, if we calculate the situation of the
curve of equilibrium, we obtain the direction of the thrust at
its extremity more conveniently, without immediately deter-
mining the place of the centre of gravity.

Y.—In order that an arch may stand without friction or
cohesion, a curve of equilibrium, perpendicular to all the surfaces
of the joints, must be capable of being drawn within the substance
of the blocks.

If the pressure on each joint be not exactly perpendicular to
the surfaces, it cannot be resisted without friction, and the
parts must slide on each other: this, however, is an event
that can never be likely to occur in practice. But if the curve,
representing the general pressure on any joint, be directed to
a point in its plane beyond the limits of the substance, the
joint will open at its remoter end, unless it be secured by the
cohesion of the cements, and the structure will either wholly
fall, or continue to stand in a new form. (Plate, fig. 5.)

From this condition, together with the determination of the
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direction of the joints already mentioned (Prop. P.), we miay
easily find the best arrangement of the joints in a flat arch ; the
object, in such cases, being to diminish the lateral thrust as
much as possible, it is obvious that the common centre of the
joints must be brought as near to the arch as is compatible
with the condition of the circle remaining withiu its limits ; and
it may even happen that the superincumbent materials would
prevent the opening of the joints even if the centre were still
nearer than this: but if, on the other hand, the arch depended
only on its own resistance, and the materials were in any danger
of being crushed, it would be necessary to keep the circle at
some little distance from its surfaces, even at the expense of
somewhat increasing the lateral pressure.

When the curve of equilibrium touches the intrados of an
arch of any kind, the compression at the surface must be at
least four times as great as if it remained in the middle of the
arch-stones (Prop. E.), and still greater than this if the cohesion
of the cements is called into action. In this estimate we suppose
the transverse sections of the blocks inflexible, so as to co-ope-
rate throughout the depth in resisting the pressure on any point ;
but in reality this co-operation will be confined within much
narrower limits, and the diminution of strength will probably
be considerably greater than is here supposed, whenever the
curve approaches to the intrados of the arch.

The passage of the curve of equilibrium through the middle
of each block is all that is necessary to ensure the stability of a
bridge of moderate dimensions and of sound materials. Its
strength is by no means increased, like that of a frame of car-
pentry, or of a beam resisting a transverse force, by an increase
of its depth in preference to any other of its dimensions: a
greater depth does, indeed, give it a power of effectually
resisting a greater force of external pressure derived from the
presence of any occasional load on any part of the structure;
but the magnitude of such a load is seldom very considerable,
in proportion to the weight of the bridge.

It is of sume importance, in these investigations, to endeavour
to trace the successive steps by which the fabrie of a bridge may
commonly be expected to fail.  Supposing the materials to be
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too’ soft, or the abutments insecure, or any part of the work to
be defective, and to afford too little resistance, the lgngth of the
curve of the arch being diminished, or its chord extended, it
will become flatter, and, consequently, sink ; the alteration being
by far the greatest, if other things are equal, where the depth
is the least, that is, near the crown or key-stone ; so that if the
curvature was, at first, nearly equal throughout, the crown will
sink so much as to cause a rapid increase of curvature on each
side in its immediate neighbourhood, which will bring the intra-
dos up to the curve of equilibrium, or even above it, the form
of this curve being little altered by the change of that of the
arch. The middle remains firm, because the pressure is pretty
equally divided throughout the blocks, but the parts newly bent
give way to the unequal force, and chip a little at their internal
surface ; but being reduced in their dimensions by the pressure,
they suffer the middle to descend still lower, and are, conse-
quently, carried down with it, so as to be relieved from the
inequality of pressure depending on their curvature, and to
transfer the effect to the parts immediately beyond them, till
these in their turn crumble, and by degrees the whole structure
falls. (Plate, Fig. 6.)

This explanation will enable us to understand some obser-
vations and experiments which the late Professor Robison has
related as somewhat paradoxical. He says, that an arch built
“of an exceedingly soft and friable stone,” the arch-stones
being also too short, began to show signs of weakness by the
stones chipping about ten feet from the middle, and that it
afterwards split at the middle, and fifteen or sixteen feet on
each side of it, and also at the abutments. And in some expe-
riments on models of arches in chalk, he found, that ¢ the arch
always broke at some place considerably beyond another point,
where the first chipping had been observed;” a circumstance
which he has not succeeded in sufficiently explaining.

SecrioN III.—Of the Effect of Friction.

The friction or adhesion of the substances, employed in
Architecture, is of the most material consequence, for insuring
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the stability of the works constructed with them ; and it is right
that we should know the extent of its operation; it is not,
however, often practically necessary to calculate its exact mag-
nitude, because it would seldom be prudent to rely materially
on it, the accidental circumstances of agitation or moisture
tending very much to diminish its effect. Nor is the cohesion
of the cements employed of much further consequence than as
enabling them to form a firm connexion, by means of which the
blocks may rest more completely on each other than they could
do without it; for we must always rcmember, that we must
lose at least half of the strength, before the cohesion of the solid
blocks themselves, in the direction of the arch, can be called
into action, and at least three fourths before the joints will have
any tendency to open throughout their extent.

Z.—The joints of an arch, composed of materials subject to
Jriction, may be situated in any direction lying within the limits
of the angle of repose, on either side of the perpendicular to the
curve of equilibrium ; the angle of repose beiny equal to the in-
clination to the horizon at which the materials begin to slide on
each other ; and the direct friction being to the pressure as the
tangent of this angle is to the radius.

It is obvious, that any other force, as well as that of gravity,
will be resisted by the friction or adhesion of the surfaces when
its direction is within the limits of the angle at which the sub-
stances begin to slide : and it may be inferred from the experi-
wents of Mr. Coulomb and Professor Viuce, that this angle is
constant, whatever the magnitude of the force may be, since
the friction is very nearly proportional to the mutual pressure
of the substances. The tendency of a body to descend along
any plane being as much less than its weight as the height of
the plane is less than its length, and the pressure on the plane
being as much less than the weight as the length is greater than
the borizontal extent, it follows, that, when the weight begins to
overcome the friction, the friction must be to the pressure as
the height of the plane to its horizontal extent, or as the tan-
gent of the inclination to the radiua.

This property of the angle of repose atfords a very casy
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method of ascertaining, by a simple experiment, the friction of
the materials employed : taking, for example, a common brick,
and placing it, with the shorter side of its end downwards, on
another which is gradually raised, we shall find that it will fall
over without beginning to slide; and when this happens, the
height must be half of the horizontal extent, a brick being
twice as long as it is broad : in this case, therefore, the friction
must be at least half of the pressure, and the angle of repose
at least 30°; and an equilateral wedge of brick could not be
forced up by any steady pressure of bricks acting against its
sides, in a direction parallel to its base. But the effects of
agitation would make such a wedge totally insecure in any
practical case; and the determination only serves to assure us,
that a very considerable latitude may be allowed to the joints
of our materials, when there is any reason for deviating from
the proper direction, provided that we be assured of a steady
pressure ; and much more in brick or stone than in wood, and
more in wood than in iron, unless the joints of the iron be .
secured by some cohesive connexion. It may also be inferred
from these considerations, that the direction of the joints can
never determine the direction of the curve of equilibrium
crossing them, since the friction will always enable them to
transmit the thrust in a direction varying very considerably
from the perpendicular ; although, with respect to any particu-
lar joint, of which we wish to ascertain the stability independent
of the friction, it would be desirable to collect the result of the
elements, of which that curve is the representative, with a proper
regard to its direction.

SectioN 1V.—Earlier Historical Details.

The original invention of arches, and the date of their general
adoption in architecture, have been discussed with great ani-
mation by the late Mr. King, Mr. Dutens, and several other
learned antiquaries. Mr. King insisted that the use of the
arch was not more ancient than the Christian era, and con-
sidered its introduction as one of the most remarkable events
accompanying that mcmorable period. Mr. Dutens appealed
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to the structure of the cloace, built by the Tarquins, and to
the authority of Seneca, who observes that the arch was generally
considered as the invention of Democritus, a Philosopher who
lived some centuries before Christ, but that, in his opinion, the
simplicity of the principle could not have escaped the rudest
architect ; and, that long before Democritus, there must have
been both bridges and doors, in both of which structures the
arch was commonly employed. There do indeed appear to be
solitary instances of arches more ancient than the epoch assigned
by Mr. King to their invention. We find arches concealed in
the walls of some of the oldest temples extant at Athens; the
cloacs are said to be arched, not at the opening into the Tiber
only, but to a greater distanee within it than is likely to have
been rebuilt at a later period for ornament ; and the fragments
of a bridge, still remaining at Rome, bear an inscription which
refers its erection to thelatter years of the Commonwealth.
But it seems highly probable, that almost all the covered ways,
constructed in the earlier times of Greece and Rome, were
cither formed by lintels, like doorways, or by stones overhanging
each other, in horizontal strata, and leaving a triangular aper-
ture, or by both these arrangements combined, as is exemplified
in the entrance to the treasury of Atreus at Mycen, where
the lintel has a triangular aperture over it, by which it is re-
lieved from the pressure of the wall above ; and this instance
serves to show how different the distribution of the pressure on
any part of a structure may be, from the simple proportions of
the beight of the materials above it. Some other old buildings,
which have been supposed to be arched, have been found, on
further examination, rather to resemble domes, which may
be built without centres, and may be left open at the summit,
the horizontal curvature producing a transverse pressure, which
supports the structure without an ordinary key-stone. And
this has been suspected to be the form of the roofs and ceilings
of ancient Babylon, where Strabo tells us that the buildings were
arched over or * camerated,” for the purpose of saving timber:
and the bridge of Rabylon, which must have been of considerable
antiquity, i» expreasly said, by Herodotus, to have consisted of
picrs of stone, with a road formed of beams of wood only. It
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may however be rejoined, that though a dome is not simply an
arch, yet it exceeds it in contrivance and mechanical complica-
tion ; it generally exerts a thrust, and requires either an
abutment, or a circular tie; and it is scarcely possible that the
inventor of a dome should not have been previously acquainted
with the construction of a common arch. Besides the term
CAMARA, the Greeks had also psALnis, Apsis, and THOLUS; the
last was particularly appropriate to circular domes; but the
variety of appellations seems to prove that the thing must have
been perfectly familiar ; and the term psaLIs is supposed to
have been applied from the appearance of the wedged arch-
stones, viewed in their elevation, which could not have been
observable in a dome of any kind.

From these outlines of the origin of the art of building
bridges, we may pass on rapidly to the latest improvements
which have been made, in Great Britain and on the Continent,
in the practice of this department of architecture. A very
ample detail of the most important operations, that are gene-
rally required to be performed in it, may be found in the
numerous Reports of the ingenious Mr. Smeaton, published
since his death by the Society of Civil Engineers in London.
They contain a body of information comprehending almost
every case that can occur to a workman, in the execution of
such structures ; and even where they have to record an acci-
dental failure, the instruction they afford is not less valuable
than where the success has been more complete.

. Respecting the general arrangement of a bridge, and the
pumber of arches to be employed, in the case of a wide river,
Mr. Smeaton has expressed his approbation of a few wide and
flat arches, supported by good abutments, in preference to more
numerous piers, which unnecessarily interrupt the water-way.
In a case where a long series of small arches was required, he
has made them so flat, and the piers so slight, that a single pier
would be incapable of withstanding the thrust of its arch: but
in order to avoid the destruction of the whole fabric in case of
an accident, he has intermixed a number of stronger piers, at
certain intervals, among the weaker ones. Where several
arches, of different heights, were required, he commonly recom-
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mended different portions of the same circle for all of them; a
mode which rendered the lateral thrust nearly equal throughout
the fabric, and had the advantage of allowing the same centre
to be employed for all, with some little addition at the ends to
adapt it to the larger arches. He records the case of Old
Walton Bridge, in which the wooden superstructure had sunk
two feet, so as to become part of a circle 700 feet in diameter,
and the thrust, thus increased, had forced the piers considerably
out of their original situation : a striking proof that the prin-
ciples of the pressure of arches must not be neglected, even
when frames of carpentry are concerned.

Mr. Smeaton particularly describes the inconveniences arising
from the old method of laying the foundations of piers, which
was introduced soon after the Conquest, and which is particu-
larly exemplified in London Bridge. The masonry commences
above low water mark, being supported on piles, which would
be exposed to the destructive alternation of moisture and dry-
ness, with the access of air, if they were not defended by other
piles, forming projections partly filled with stone, and denomi-
nated sterlings ; which, in their turn, occasionally require the
support and defence of new piles surrounding them, since they
are not easily removed when they decay ; so that, by degrees, a
great interruption is occasioned by the breadth of the piers,
thus augmented, requiring, for the transmission of the water,
an increase of velocity, which is not only inconvenient to the
navigation, but also carries away the bed of the river under the
arches, and immediately below the bridge, making deep pools
or excavations, which require from time to time to be filled up
with rubble stones; while the materials, which have been
carried away by the stream, are deposited a little lower down
in shoals, and very much interfere with the navigation of the
river. From these circumstances, as well as from the effects of
time and decay, it has happened, according to late reports, that
the repairs of London Bridge have often amounted, for many
years together, to 40004 a year, while those of Westminster
aud Blackfriars Bridges have not cost s0 many hundreds. It
is true, that the fall produces a trifling advantage in enabling
the London water-works to employ mote of the force of the
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tide in raising water for the use of the city; and this right,
being established as a legal privilege, has long delayed the
improvements, which might otherwise have been attempted, for
the benefit of the navigation of the river. The interest of the
proprietors of the water-works has been valued at 125,000L ;
and it has been estimated that 50,000/ would be required for
the erection of steam-engines to supply their place ; while, on
the other hand, it is said that from thirty to forty persons, on an
average, have perished annually from the dangers of the fall
under the bridge. .
But Mr. Smeaton, as well as his predecessor Mr. Labelye,
appears sometimes to have gone into a contrary extreme, and to
have been somewhat too sparing in the use of piles. It is well
known that the opening of Westminster Bridge was delayed for
two years on account of the failure of a pier, the foundation of
which had been partly undermined by the incautious removal
of gravel from the bed of the river, in its immediate neigh-
bourhood ; a circumstance which would scarcely have occurred
if piles had been more freely employed in securing the founda-
tion. The omission, however, did not arise from a want of a
just estimate of the importance of piles in a loose bottom, but from
a confidence, founded on examination as the work advanced, that
the bed of the river was already sufficiently firm. Mr. Smeaton
directed the foundations of Hexham Bridge to be laid, as those
of Westminster Bridge had been, by means of caissons, or
boxes, made water-tight, and containing the bottom of the pier,
completed in masonry well connected together, and ready to be
deposited in its proper place by lowering the caissons, and then-
detaching the sides, which are raised for further use, from the
bottoms, which remain fixed as a part of the foundations imme-
diately resting on the bed of the river, previously made smooth
for their reception, and sometimes also rendered more firm by
piles and a grating of timber. By a careful examination of the
bottom of the river at Hexham, Mr. Smeaton thought he had
ascertained that the stratum of gravel, of which it consisted,
was extremely thin, and supported by a quicksand, much too
loose to give a firm hold to piles, while he supposed the gravel
strong enough to bear the weight of the pier, if built in a
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caisson. The bridge was a handsome edifice, with elliptical
arches, and stood well for a few years; but an extraordinary
flood occurred, which caused the water to rise five feet higher
above than below the bridge, and to flow through it with so
great a velocity, as to undermine the piers, and cause the
bridge to divide longitudinally, and fall in against the stream ;
a circumstance so much the more mortifying to the eminent
engineer who had constructed it, as it was the only one of his
works that, “in a period of thirty years,” had been known to
fail. It was observed that some of the piers, which had been
built in coffer-dams, with the assistance of some piles, withstood
the violence of the flood ; and it is remarkable, that the whole
bridge has been rebuilt by a provincial architect with perfect
success, having stood without any accident for many years.

It seems, therefore, scarcely prudent to trust any very heavy
bridge to a foundation not secured by piles, unless the ground
on which it stands is an absolute rock; and in this case, as well
as when piles are to be driven and sawed off, it is generally
necessary to have recourse to a coffer-dam. In the instance of
the bridge at Harraton, for example, where the rock is nine
feet below the bed of the river, Mr. Smeaton directs that the
piles forming the coffer-dam be rebated into each other, driven
down to the rock, and secured by internal stretchers, before the
water contained within them is pumped out. In some cases, a
double row of piles, with clay between them, has been employed
for forming a coffer-dam ; but in others it has been found more
convenient to drive and cut off the piles under water, by means
of proper machinery, without the assistance of a coffer-dam.

Piles are employed of various lengths, from 7 to 16 feet or
more, and from 8 to 10 inches in thickness, and they are
commonly shod with iron. Smeaton directs them to be driven
till it requires from 20 to 40 strokes of the pile driver to sink
them an inch, according to the magnitude of the weight, and
the firmness required in the work. He was in the habit of
frequently recommending the piles surrounding the piers to be
secured by throwing iu rubble stone, so as to form an inclined
surface, sloping gradually from the bridge upwards and down-
wards. In the case of Coldstream Bridge, it was also found
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necessary to have a partial dam, or artificial shoal, thrown
across the river a little below the bridge, in order to lessen the
velocity of the water, which was cutting up the gravel from the
base of the piles. But all these expedients are attended with
considerable inconvenience, and it is better to avoid them in
the first instance by leaving the water-way as wide and as deep
as possible, and by making the foundations as firm and exten-
sive as the circumstances may require.

The angles of the plers, both above and under water, are
commonly rounded off, in order to facilitate the passage of the
stream, and to be less liable to accidental injury. Mr. Smeaton
recommends a cylindrical surface of 60° as a proper termination;
and two such surfaces, meeting each other in an angle, will
approach to the outline of the head of a ship, which is calcu-
lated to afford the least resistance to the water gliding by it.

We find that, in the year 1769, the earth employed for
filling up the space between the walls of the North Bridge in
Edinburgh, had forced them out, so as to require the assistance
of transverse bars and buttresses for their support. In the
more modern bridges, these accidents are prevented by the
employment of longitudinal walls for filling up the haunches,
with flat stones covering the intervals between them, instead of
the earth, or the more solid materials which were formerly used,
and which produced a greater pressure both on the arch and on
the abutments, as well as a transverse thrust against the side
walls. For the inclination of the road passing over this bridge,
Mr. Smeaton thought a slope of 1 in 12 not too great ; observ-
ing that horses cannot trot even when the ascent is much more
gradual than this, and that if they walk, they can draw a
carriage up such a road as this without difficulty : and, indeed,
the bridge at Newcastle appears, for a short distance, to have
been much steeper. But it has been more lately argued, on
another occasion, that it is a great inconvenience in a crowded
city, to have to lock the wheel of a loaded waggon ; that this is
necessary at all times on Holborn Hill, where the slope is only
1 in 18; while in frosty weather this street is absolutely impas-
sable for such carriages: and the descent of Ludgate Hill,
which is only 1 in 36, is considered as much more desirable,
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when it is poesible to construct a bridge with an acclivity so
gentle.

Secrion V.—Improvements of the Port of London.

From the study of Mr. Smeaton’s diversified labours, we
proceed to take a cursory view of the Parliamentary Inquiry
respecting the improvement of the Port of London, which has
brought forward a variety of important information, and
suggested a multiplicity of ingenious designs. The principal
part of that which relates to our present subject is contained in
the Second and Third Reports from the Select Committee of the
House of Commons, on the improvement of the Port of
London ; ordered to be printed 11th July, 1799, and 28th
July, 1800.

We find in these Reports some interesting details respecting
the history of London Bridge, which appears to have been
begun, not, as Hume tells us, by William Rufus, who was
killed in 1100, but in 1176, under Henry II.; and to have
heen completed in 83 years. The piles are principally of elm,
and they bave remained for six centuries without material
decay ; although a part of the bridge fell, and was rebuilt about
100 years after it was begun. Rochester, York, and Newcastle
Bridges were also built in the twelfth century, as well as the
Bridge of St. Eeprit at Avignon. About 50 years ago, the
middle pier of London Bridge was removed ; the piles were
drawn by a very powerful screw, commonly used for lifting the
wheels of the water-works; and a single arch was made to
occupy the place of two. In consequence of this, the fall was
somewhat diminished, and it was necessary partially to obstruct
the channel again, in order that the stream should have force
enough for the water-works ; but it was very difficult to secare
the bottom from the effects of the increased velocity under the
arch. Several strong beams were firmly fixed across the bed
of the river, but only two of them retained their situations for
any length of time ; and the materials carricd away had been
deposited below the middle arch, so as to form a shoal, which
was only 16 inches below the surface at low water. The
Reports contain also much particular information respecting
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Blackfriars Bridge, the piles for which were driven under water,
and cut off level with the bed of the foundations, by a machine
of Mr. Mylne’s invention. The expense of Blackfriars Bridge,
including the purchase of premises, was about 260,000L ; that
of the building only was 170,000/, Westminster Bridge, built
in the beginning of the century, cost about 400,000

The committee had received an immense variety of plans
and proposals for docks, wharfs, and bridges, and many of these
have been published in the Reports, together with engraved
details on a very ample scale. They finally adopted three
resolutions respecting the rebuilding of London Bridge.

«], That it is the opinion of this Committee, that it is
essential to the improvement and accommodation of the port of
London, that London Bridge should be rebuilt upon such a
construction as to permit a free passage, at all times of the
tide, for ships of such a tonnage, at least, as the depth of the
river would admit of, at present, between London Bridge and
Blackfriars Bridge.

2. That it is the opinion of this Committee, that an iron
bridge, having its centre arch not less than 65 feet high in the
clear, above high-water-mark, will answer the intended purpose,
and at the least expense.

3. That it is the opinion of this Committee, that the most
convenient situation for the New Bridge will be immediately
above St. Saviour’s Church, and upon a line from thence to the
Royal Exchange.”

In a subsequent Report, ordered to be printed 3rd June,
1801, we find a plan for a magnificent iron bridge of 600 feet
span, which had been submitted to the Committee by Messrs.
Telford and Douglas. Mr. Telford’s reputation in his profession
asan engineer deservedly attracted the attention of the Com-
mittee ; but many practical difficulties having been suggested
to them, they circulated a number of queries relating to the
proposal, among such persons of science, and professional archi-
tects, as were the most likely to have afforded them satisfactory
information. But the results of these inquiries are not a little
bumiliating to the admirers of abstract reasoning and of
geometrical evidence ; and it would be difficult to find a
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greater discordance in the most heterodox professions of faith,
or in the most capricious variations of taste, than is exhibited
in the responses of our most celebrated professors, on almost
every point submitted to their consideration. It would be
useless to dwell on the numerous errors with which many of the
answers abound ; but the questions will afford us a very con-
venient clue for directing our attention to such subjects of
deliberation as are really likely to occur in a multiplicity of
cases ; and it will perhaps be possible to find such answers for
all of them, as will tend to remove the greater number of the
difficulties which have hitherto embarrassed the subject.

QUMIOHS RESPECTING THE CONSTRUCTION OF A CAST IRON
BRIDGE, OF A SBINGLE ARCH, 600 FPEET IN THE S8PAN, AND
65 rxeT risE. (Plate, Fig. 7.) .

1. What parts of the bridge should be considered as wedges,
which act on each other by gravity and pressure, and what parts
as weight, acting by gravity only, similar to the walls and other
loading, usually erected upon the arches of stone bridges? Or
does the whole act as one frame of iron, which can only be de-
stroyed by crushing its parts 9

The distribution of the resistance of a bridge may be con-
sidered as in some measure optional, since it may be transferred
from one part of the structure to another, by wedging together
most firmly those parts which we wish to be most materially con-
cerped in it. But there is also a natural principle of adjustment,
by which the resistance has a tendency to be thrown where it can
best be supported ; for the materials being always more or less
compressible, a very small change of form, supposed to be equal
throughout the structure, will relieve those parts most which
are the most strained, and the accommodation will be still more
effectual when the parts most strained undergo the greatest
change of form. Thus, if the flatter ribs, seen at the upper
part of the propoeed structure, supported any material part of
its weight, they would undergo a considerable longitudinal
compression, and being shortened a little, would naturally
descend very rapidly upon the more curved, and consequently

VOL. 1L Q
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stronger parts below, which would soon relieve them from the
load improperly allotted to them; the abutment would also
give way a little, and be forced out, by the greater pressure
at its upper part, while the lower part remained almost entirely
unchanged.

It is, however, highly important that the work shonld, in the
first instance, be so arranged as best to fulfil the intended
purposes, and especially that such parts should have to support
the weight as are able to do it with the least expense of lateral
thrust, which is the great evil to be dreaded in a work of these
gigantic dimensions, the materials themselves being scarcely
ever crushed when the arch is of a proper form ; and the failure
of an iron bridge, by the want of ultimate resistance of its parts
to a compressing force, being a thing altogether out of our
contemplation ; and it is obvious that the greater the curvature
of the resisting parts, the smaller will be the lateral thrust on
the abutments. :

We may, therefore, sufficiently answer this question, by
saying, that the whole frame of the proposed bridge, so far as
it lies in or near the longitudinal direction of the arch, may
occasionally cooperate in affording a partial resistance if re-
quired ; but that the principal part of the force ought to be
concentrated in the lower ribs, not far remote from the intrados.

But it is by no means allowable to calculate upon a curve of
equilibrium exactly coinciding with the intrados ; since, if this
supposition were realized, we should lose more than three-
fourths of the strength of our materials, and all the stability of
the joints independent of cohesion, so that the slightest external
force might throw the curve beyond the limits of the joint, and
cause it to open. Nor can we always consider the curve of
equilibrium as parallel to the intrados: taking, for example,
the case of a bridge like Blackfriars, the curve of equilibrium,
passing near the middle of the arch-stones, is, and ought to be,
nine or ten feet above the intrados at the abutment, and only
two or three feet at the crown; so that the ordinates of this
curve are altogether different from the ordinates which have
hitherto been considered by theoretical writers. It may be
imagined that this difference is of no great importance in
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practice ; but its amount is much greater than the difference
between the theoretical curves of equilibrium, determined
by calculation, and the commonest circular or elliptical
arches.

. With respect to the alternative of comparing the bridge with
masonry or with carpentry, we may say, that the principles on
which the equilibrium of bridges is calculated, are altogether
elementary, and independent of any figurative expressions of
strains and mechanical purchase, which are employed in con-
sidering many of the arrangements of carpentry, and which may
indeed, when they are accurately analysed, be resolved into
forces opposed and combined in the :ame manner as the thrusts of
a bridge. It is, therefore, wholly unnecessary, when we inquire
into the strength of such a fabric, to distinguish the thrusts of
masonry from the strains of carpentry, the laws which govern
them being not only similar but identical ; except that a strain
is commonly understood as implying an exertion of cohesive
force, and we have seen that a cohesive force ought never to be
called into action in a bridge, since it implies a great and
unneceseary sacrifice of the strength of the materials employed.
.II, indeed, we wanted to cross a mere ditch, without depending
on the firmness of the bank, we might easily find a beam of
wood or a bar of iron strong enough to afford a passage over it,
unsupported by any abutment, because, in a substance of incon-
siderable length, we are sure of having more strength than we
require. But to assert that an iron bridge of 600 feet span
‘“is a lever exerting a vertical pressure only on the abutments,”
is to pronounce a sentence from the lofty tribunal of refined
science, which the simplest workman must feel to be erroneous.
Bat, in this instance, the error is not so much in the comparison
with the lever, as in the inattention to the mode of fixing it:
for a lever or beam of the dimensions of the proposed bridge,
lying loosely on its abutments, would probably be at least a
hundred times weaker than if it were firmly connected with the
abutments as a bridge is, s0o as to be fixed in a determinate
direction. And the true reason of the utility of cast iron for
building bridges, consists not, as has often been supposed,
in its capability of being united so as to act like a frame of

Q2
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carpentry, but in the great resistance which it seems to afford
to any force tending to crush it.

QuEsTiON II. Whether the strength of the arch is affected,
and in what manner, by the proposed increase of its width towards
the two extremities or abutments, when considered vertically and
horizontally ? And if so, what form should the bridge gradually
acquire?

The only material advantage, derived from widening the
bridge at the ends, consists in the firmness of the abutments ;
and this advantage is greatly diminished by the increase of
horizontal thrust which is occasioned by the increase of breadth ;
while the curve of equilibrium is caused to deviate greatly
from a circular or parabolic arc, in consequence of the great
inequality of the load on the different parts; and there seems
to be no great difficulty in forming a firm connexion between a
narrow bridge and a wider abutment, without this inconvenience.
The lateral strength of the fabric, in resisting any horizontal
force, would be amply sufficient, without the dilatation at the
ends. Perhaps the form was suggested to the inventor by the
recollection of the partial failure of an earlier work of the same
kind, which has been found to deviate considerably from the
vertical plane in which it was originally situated ; but in this
instance, there seems, if we judge from the engravings which
bave been published, to have been a total deficiency of oblique
braces; and the abutments appear to have been somewhat less
firm than could have been desired, since one of them contains
an arch and some warehouses, instead of being composed of
more solid masonry.

QuesTioN IIL. In what proportion should the weight be dis-
tributed from the centre to the abutments, to make the arch
uniformly strong ?

This question is so comprehensive, that a complete answer to
it would involve the whole theory of bridges; and it will be
necessary to limit our investigations to an inquiry whether the
structure, represented in the plan, is actually such as to afford
a uniform strength, or whether any alterations can be made in
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it, compatible with the general outlines of the proposal, to
remedy any imperfections which may be discoverable, in the
arrangement of the pressure.

There is an oversight in some of the official answers to this
question, from quarters of the very first respectability, which
requires our particular attention. The weight of the different
parts of the bridge has been supposed to differ so materially
from that which is required for producing an equilibrium in a
circular arch of equable curvature, that it has been thought
impoasible to apply the principles of the theory in any manner
to an arch so constituted, at the same time that the structure is
admitted to be tolerably we!l calculated to stand, when con- °
sidered as a frame of carpentry. The truth is, that it is by no
means absolutely necessary, nor often perfectly practicable, that
the mean curve of equilibrium should agree precisely in its
form with the curves limiting the external surfaces of the parts
bearing the pressure, especially when they are sufficiently exten-
give to admit of considerable latitude within the limits of their
substance. It may happen in many cases, that the curve of
equilibrium is much flatter in one part, and more convex in
another, than the circle which approaches nearest to it : and yet
the distance of the two curves may be inconsiderable, in ::ompa-
rison with the thickness of the parts capable of co-operating in
the resistance. The great problem, therefore, in all such cases,
is, to determine the precise situation of the curve of equilibrium
in the actual state of the bridge ; and when this has been done,
the directions of the ribs, in the case of an iron bridge, and of
the joints of the arch-stones, in a stone bridge, may be so regu-
lated as to afford the greatest possible security; and if this
security is not deemed sufficient, the whole arrangement must
be altered.

Considering the cffect of the dilatation at the ends in in-
creasing the load, we may estimate the depth of the materials
causing the pressure at the abutments as about three times as
great as at the crown; the plan not being sufficiently minute
to afford us a more precisc determination ; and it will be quite
accurate cnough to take w=a + br' (Prop. S.) for the load, w
becoming = 3a when £ is 300 feet, whence 90000 & = 24,
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andb=ma; we have then ¢y=§ azr® 4 maz‘ for
the valuc of the ordinate. Now the obliquity to the horizon
being inconsiderable, this ordinate will not ultimately be
much less than the whole height of the arch ; and its greatest
value may be called 64 feet: consequently when z = 300, we
have 64 m = % a x 90,000 + } a X 90,000, and the radius
of curvature at the vertex r = E = 9387.5 feet, while the radius

of the intrados is 725 feet, and that of a circle passing through
both ends of the curve of equilibrium, as we have supposed
them to be situated, 735 feet. Hence, y being = —— 2* (1 +
2—701706 .r’), we anay calculate the ordinates at different points,
and compare them with those of the circular curves.

Distance . vmm f veme ;;?he Ordinate y.
50 1.73 1.7 1 1.34
100 6.94 6.82 5.38
150 15.66 15.43 13.00
200 28.13 -27.70 24.50
250 44.42 43.81 41.01
300 65.00 64.00 64.00

Hence it appears that, at the distance of 200 feet from the
middle, the curve of equilibrium will rise more than 3 feet
above its proper place; requiring a great proportion of the
pressure to be transferred to the upper ribs, with a considerable
loss of strength, for want of a communication approaching more
nearly to the direction of the curve. If we chose to form the
lower part of the structure of two series of frames, each about
4 feet deep, with diagonal braces, we might provide amply for
such an irregularity in the distribution of the pressure; but it
would be necessary to cast the diagonals as strong as the
blocks, in order to avoid the inequality of tension from unequal
cooling, which is often a cause of dangerous accidents; it would,
however, be much better to have the arch somewhat elliptical
in its form, if the load were of necessity such as has been
supposed.



No. LII. ON THE STRUCTURE OF BRIDGES, 231

QuesTioN IV. What pressure will each part of the bridge
receive, supposing it divided into any given number of equal
sections, the weight of the middle section being given? And on
what parts, and with what force, will the whole act upon the
abutments ?

It appears from the preceding calculations. that the weight of
the “middle section” alone is not sufficient for determining the
pressure in any part of the fabric ; although, when the form of
the curve of equilibrium has been found, its radius of curvature
at the summit must give at once the length of a similar load
equivalent to the lateral thrust ; and by combining this thrust
with the weight, or with the direction of the curve, the oblique
thrust at any part of the arch may be readily found. Thus,
since at the abutment w = a + b2' = 3a, and b2® = 2a, we

have y—%%z’+$—%z‘,md %i—,thetangentofthein-
clination, beoomee-%x+%—£z’-‘—‘-:+%%'=% ==
35373 = 15 = -5333 ; consequently the horizontal thrust will

be to the weight of the half arch as 15 to 8, and to that of the
whole arch as 15 to 16. Now the arch is supposed to contain
6500 tons of cast iron, and together with the road, will amount,
according to Professor Robison’s estimate, to 10,000 tons ; so
that the lateral thrust on each abutment is 9470 tons; and
since this is equal to the weight of 937.5 feet in length, of the
thickness of the crown, the load there must be about 10 tons
for each foot of the length. Hence it appears, that although
the thrust, thus calculated, is greater than the weight of a por-
tion of equal length with the apparent radius at the crown, it
is less than would be inferred from the angular direction of the
intrados at the abutment : the inclination of the termination of
the arch being 24° 27', while that of the true curve of equili-
brium is 28° 4’; that is, about one-tenth greater.

As a further illustration of the utility of this mode of com-
putation, we may take the example of an arch of Blackfriars
Bridge. The radius of curvature, as far as four-fifths of the
breadth, is here 56 feet ; and we may suppose, without sensible
error, the whole load to be that which would be determined by
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the continuation of the same curve throughout the breadth.
Now, the middle of the arch stones, at the distance of 50 feet
from the middle of the bridge, that is, immediately over the
termination of the abutment, is about 12 feet above that termi-
nation, and at the crown about three feet above the intrados,
8o that we have only 31 feet for the extreme value of y, while
the whole height of the arch is 40; and a being 6-58 fect, we

find (Prop. U.) my=13,510 = 31m, whence m = 436, and —

=r = 66} ; we also obtain the values of the ordinates of the
curve as in the annexed table.

Daaeroumes N
10 feet 16 90
20 3.12 3.72
25 5.13 6.12
30 7.71 8.75
40 15.81 16.81
50 31.00 31.00

Hence it appears that the greatest deviation is about 30 feet
from the middle, where it amounts to a little more than a foot.
But if we suppose this deviation divided by a partial displace-
ment of the curve at its extremities, as it would probably be in
reality, even if the resistance were confined to the arch-stones,
it would be only about half as great in all three places; and
even this deviation will reduce the strength of the stones to
two-thirds, leaving them however still many times stronger than
can ever be necessary. The participation of the whole fabric,
in supporting a share of the oblique thrust, might make the
pressure on the arch-stones somewhat less unequal, and the
diminution of their strength less considerable ; but it would be
better that the pressure should be confined almost entirely to
the arch-stones, as tending less to increase the horizontal thrust,
which is here compressed by m = 436, implying the weight of
so many square feet of the longitudinal section of the bridge;
while, if we determined it from the curvature of the intrados, it
would appear to be only 56a = 368.

In this calculation, the oblique direction of the joints, as
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affecting the load, has not been considered ; but its effect may
be estimated by merely supposing the specific gravity of the
materials to be somewhat increased. Thus, since the back of
each arch-stone i3 about one-eighth wider than its lower end,
the weight of the materials pressi